Question #174271

Question 2

You are required to use the data provided in Table 1.0 to determine:

a) The modal price in $US AN( 7 marks)

b) The standard deviation AN( 7 marks)

c) The skewness of frequency distribution and explain the significance of the results in terms the direction of your findings. AN (6 marks)

Explain the significance of your answer in each case.

Table 1.0

Price ($US)

Frequency

1.0-1.01

1.05-1.09

1.10-1.14

1.15-1.19

1.20-1.24

1.25-1.29

4 6 1 0 15 8 5

Total Marks: 20


1
Expert's answer
2021-04-15T06:55:58-0400

a) the modal group (the group with the highest frequency): 1.151.191.15-1.19


Estimated Mode (modal price)=L+fmfm1(fmfm1)+(fmfm+1)w=L+\frac{f_m-f_{m-1}}{(f_m-f_{m-1})+(f_m-f_{m+1})}\cdot w

where

LL is the lower class boundary of the modal group

fm1f_{m-1} is the frequency of the group before the modal group

fmf_{m} is the frequency of the modal group

fm+1f_{m+1} is the frequency of the group after the modal group

ww is the group width


Price that occurs most often:

modal price=1.145+151151+1580.05=1.178=1.145+\frac{15-1}{15-1+15-8}\cdot0.05=1.178


b) Grouped standard deviation:

σ=FM2nμ2n1\sigma=\sqrt{\frac{\sum FM^2-n\mu^2}{n-1}}

FF is frequency

MM is midpoint of range

μ\mu is data mean


M=x1+x22M=\frac{x_1+x_2}{2}

M1=1.005,M2=1.03,M3=1.07,M4=1.12,M5=1.17,M6=1.22,M7=1.27M_1=1.005,M_2=1.03,M_3=1.07,M_4=1.12,M_5=1.17,M_6=1.22,M_7=1.27

μ=MF/n\mu=\sum MF/n

n=F=4+6+1+15+8+5=39n=\sum F=4+6+1+15+8+5=39

μ=1.0054+1.036+1.07+1.1715+1.228+1.27539=1.15\mu=\frac{1.005\cdot4+1.03\cdot6+1.07+1.17\cdot15+1.22\cdot8+1.27\cdot5}{39}=1.15

FM2=1.00524+1.0326+1.072+1.17215+1.2228+1.2725=52.06\sum FM^2=1.005^2\cdot4+1.03^2\cdot6+1.07^2+1.17^2\cdot15+1.22^2\cdot8+1.27^2\cdot5=52.06


Standard deviation (dispersion of a set of prices):

σ=52.06391.15238=0.112\sigma=\sqrt{\frac{52.06-39\cdot1.15^2}{38}}=0.112


c) Skewness, in statistics, is the degree of asymmetry observed in a probability distribution.

Skew=3(MeanMedian)/Standard DeviationSkew=3(Mean-Median)/Standard\ Deviation


Estimated Median=L+(n/2)BGwL+\frac{(n/2)-B}{G}\cdot w

BB is the cumulative frequency of the groups before the median group

GG is the frequency of the median group

the median group: 1.151.191.15-1.19

B=4+6+1=11B=4+6+1=11


Estimated Median=1.145+(39/2)11150.05=1.173=1.145+\frac{(39/2)-11}{15}\cdot0.05=1.173


Skew=3(1.151.173)/0.112=0.625Skew=3(1.15-1.173)/0.112=-0.625

So, the distribution left side skewed.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS