Solution:
n(S)=36
A={(1,2),(1,4),(1,6),(2,1),(2,3),(2,5),(3,2),(3,4),(3,6),(4,1),(4,3)(4,5),(5,2),(5,4),(5,6),(6,1),(6,3),(6,5)}
So, n(A)=18
Since B is incomplete in question, we assume B be the event of getting 1 on the first dice.
B={(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)}
So, n(B)=6
C={(1,6),(6,1),(2,5)(5,2),(3,4),(4,3)}
So, n(C)=6
A∩B={(1,2),(1,4),(1,6)}
So, n(A∩B)=3
B∩C={(1,6)}
So, n(B∩C)=1
A∩C={(1,6),(6,1),(2,5)(5,2),(3,4),(4,3)}
So, n(A∩C)=6
(i) Now, P(A∩B)=n(S)n(A∩B)=363=121
P(B∩C)=n(S)n(B∩C)=361
P(A∩C)=n(S)n(A∩C)=366=61
(ii) If A and B are independent, then P(A∩B)=P(A)P(B)
P(A)P(B)=3618.366=121=P(A∩B)
For B and C:
P(B)P(C)=366.366=361=P(B∩C)
For A and C:
P(A)P(C)=3618.366=121=P(A∩C)
Hence, A and B, B and C are independent but A and C are not.
Comments