Question #171727

In a poisson frequency distribution, frequency corresponding to 3 successes in 2/3 times frequency corresponding to 4 successes. Find the mean and standard deviation. 


1
Expert's answer
2021-03-16T14:20:33-0400

Denote a number of successes as kk .

Then probability for Poisson distribution is

P(k)=λkeλk!P(k)=\dfrac{\lambda^k\cdot e^\lambda}{k!}

Mean and variance are both equal to λ\lambda .

So,

mean E[X]=λ\bold{E}[X]=\lambda

standard deviation σ=Var[X]=λ\sigma=\sqrt{\bold{Var}[X]}=\sqrt{\lambda} .


P(3)=λ3eλ3!P(3)=\dfrac{\lambda^3\cdot e^\lambda}{3!}


P(4)=λ4eλ4!P(4)=\dfrac{\lambda^4\cdot e^\lambda}{4!}


P(3)=23P(4)P(3)=\dfrac{2}{3}P(4)


λ3eλ3!=23λ4eλ4!\dfrac{\lambda^3\cdot e^\lambda}{3!}=\dfrac{2}{3}\cdot\dfrac{\lambda^4\cdot e^\lambda}{4!}


λ33!=23λ44!\dfrac{\lambda^3}{3!}=\dfrac{2}{3}\cdot\dfrac{\lambda^4}{4!}


13!=23λ4!\dfrac{1}{3!}=\dfrac{2}{3}\cdot\dfrac{\lambda}{4!}


λ4!=3213!\dfrac{\lambda}{4!}=\dfrac{3}{2}\cdot\dfrac{1}{3!}


λ=324!3!\lambda=\dfrac{3}{2}\cdot\dfrac{4!}{3!}


λ=323!43!=32=6\lambda=\dfrac{3}{2}\cdot\dfrac{3!\cdot4}{3!}=3\cdot2=6


Answer

Mean E[X]=6\bold{E}[X]=6

Standard deviation σ=6\sigma=\sqrt{6}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS