In a poisson frequency distribution, frequency corresponding to 3 successes in 2/3 times frequency corresponding to 4 successes. Find the mean and standard deviation.
Denote a number of successes as "k" .
Then probability for Poisson distribution is
"P(k)=\\dfrac{\\lambda^k\\cdot e^\\lambda}{k!}"
Mean and variance are both equal to "\\lambda" .
So,
mean "\\bold{E}[X]=\\lambda"
standard deviation "\\sigma=\\sqrt{\\bold{Var}[X]}=\\sqrt{\\lambda}" .
"P(3)=\\dfrac{\\lambda^3\\cdot e^\\lambda}{3!}"
"P(4)=\\dfrac{\\lambda^4\\cdot e^\\lambda}{4!}"
"P(3)=\\dfrac{2}{3}P(4)"
"\\dfrac{\\lambda^3\\cdot e^\\lambda}{3!}=\\dfrac{2}{3}\\cdot\\dfrac{\\lambda^4\\cdot e^\\lambda}{4!}"
"\\dfrac{\\lambda^3}{3!}=\\dfrac{2}{3}\\cdot\\dfrac{\\lambda^4}{4!}"
"\\dfrac{1}{3!}=\\dfrac{2}{3}\\cdot\\dfrac{\\lambda}{4!}"
"\\dfrac{\\lambda}{4!}=\\dfrac{3}{2}\\cdot\\dfrac{1}{3!}"
"\\lambda=\\dfrac{3}{2}\\cdot\\dfrac{4!}{3!}"
"\\lambda=\\dfrac{3}{2}\\cdot\\dfrac{3!\\cdot4}{3!}=3\\cdot2=6"
Answer
Mean "\\bold{E}[X]=6"
Standard deviation "\\sigma=\\sqrt{6}"
Comments
Leave a comment