Prove or disprove:
a.) If π(π΄) = π(π΅) = π then π(π΄π΅) β€ π^2 .
b.) If π(π΄) = 0 then π(π΄π΅) = 0.
c.) If π(π΄Μ ) = π and π(π΅Μ ) = π then π(π΄π΅) β₯ 1 β π β π.
Prove or disprove:
a.) If π(π΄) = π(π΅) = π then π(π΄π΅) β€ π^2 .
Put B=A, then π(π΄) = π(π΅) = π, but π(π΄π΅)=π(π΄) =π> π^2 (if p is not equal to 0 or 1). The assertion is disproved.
b.) If π(π΄) = 0 then π(π΄π΅) = 0.
This is true, as "AB\\subset A" and π(π΄π΅)β€π(π΄)=0. Therefore π(π΄π΅)=0.
c.) If π(π΄Μ ) = π and π(π΅Μ ) = π then π(π΄π΅) β₯ 1 β π β π.
False. If we take a=b=0, we would get π(π΄π΅) β₯ 1 which contradicts to the inequality π(π΄π΅)β€π(π΄)=0.
Comments
Leave a comment