Five coins are tossed. Let Z be the random variable representing the number of heads that occur. Find the values of the random variable Z.
We will assume that the probability of getting heads and tails is the same: "p = q = \\frac{1}{2}".
Using Bernoulli's formula, we find the probability that 0, 1, 2, 3, 4, and 5 heads will land:
"P(0) = {q^5} = {\\left( {\\frac{1}{2}} \\right)^5} = \\frac{1}{{32}}"
"P(1) = C_5^1p{q^4} = 5 \\cdot {\\left( {\\frac{1}{2}} \\right)^5} = \\frac{5}{{32}}"
"P(2) = C_5^2{p^2}{q^3} = 10 \\cdot {\\left( {\\frac{1}{2}} \\right)^5} = \\frac{{10}}{{32}}"
"P(3) = C_5^3{p^3}{q^2} = 10 \\cdot {\\left( {\\frac{1}{2}} \\right)^5} = \\frac{{10}}{{32}}"
"P(4) = C_5^4{p^4}q = 5 \\cdot {\\left( {\\frac{1}{2}} \\right)^5} = \\frac{5}{{32}}"
"P(5) = {p^5} = {\\left( {\\frac{1}{2}} \\right)^5} = \\frac{1}{{32}}"
We get the distribution law
"\\begin{matrix}\nZ&0&1&2&3&4&5\\\\\np&{\\frac{1}{{32}}}&{\\frac{5}{{32}}}&{\\frac{{10}}{{32}}}&{\\frac{{10}}{{32}}}&{\\frac{5}{{32}}}&{\\frac{1}{{32}}}\n\\end{matrix}"
Comments
Leave a comment