Question #169778

The continuous random variable x has the probability density function,

𝑓(𝑥) =

{

1/ 2(𝑥 - 2), 2 ≤ 𝑥 ≤ 3

𝑎, 3 < 𝑥 ≤ 5

2 - 𝑏𝑥, 5 < 𝑥 ≤ 6

0, 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

i. Find the values of a and b, and sketch the graph of f(x).

ii. Find the cumulative distribution function, f(x) and sketch it.



1
Expert's answer
2021-03-09T05:32:11-0500

Find the distribution function F(x)=xf(x)dxF(x) = \int\limits_{ - \infty }^x {f(x)dx}.

If x<2x < 2 then F(x)=x0dx=0F(x) = \int\limits_{ - \infty }^x {0dx} = 0

If x3x \le 3 then F(x)=20dx+2x12(x2)dx=x242xx2x=x244x+2=x24x+1F(x) = \int\limits_{ - \infty }^2 {0dx} + \int\limits_2^x {\frac{1}{2}(x - 2)dx} = \left. {\frac{{{x^2}}}{4}} \right|_2^x - \left. x \right|_2^x = \frac{{{x^2} - 4}}{4} - x + 2 = \frac{{{x^2}}}{4} - x + 1

If x5x \le 5 then F(x)=20dx+2312(x2)dx+3xadx=x2423x23+ax3x=9443+2+a(x3)=541+ax3a=ax3a+14F(x) = \int\limits_{ - \infty }^2 {0dx} + \int\limits_2^3 {\frac{1}{2}(x - 2)dx} + \int\limits_3^x {adx} = \left. {\frac{{{x^2}}}{4}} \right|_2^3 - \left. x \right|_2^3 + a\left. x \right|_3^x = \frac{{9 - 4}}{4} - 3 + 2 + a(x - 3) = \frac{5}{4} - 1 + ax - 3a = ax - 3a + \frac{1}{4}

If x6x \le 6 then

F(x)=20dx+2312(x2)dx+35adx+5x(2bx)=x2423x23+ax35+2x5xbx225x=9443+2+2a+2(x5)b2(x225)=541+2a+2x10bx22+25b2=bx22+2x+2a+25b2394F(x) = \int\limits_{ - \infty }^2 {0dx} + \int\limits_2^3 {\frac{1}{2}(x - 2)dx} + \int\limits_3^5 {adx} + \int\limits_5^x {\left( {2 - bx} \right)} = \left. {\frac{{{x^2}}}{4}} \right|_2^3 - \left. x \right|_2^3 + a\left. x \right|_3^5 + 2\left. x \right|_5^x - \left. {\frac{{b{x^2}}}{2}} \right|_5^x = \frac{{9 - 4}}{4} - 3 + 2 + 2a + 2(x - 5) - \frac{b}{2}({x^2} - 25) = \frac{5}{4} - 1 + 2a + 2x - 10 - \frac{{b{x^2}}}{2} + \frac{{25b}}{2} = - \frac{{b{x^2}}}{2} + 2x + 2a + \frac{{25b}}{2} - \frac{{39}}{4}

If x>6x > 6 then F(x)=20dx+2312(x2)dx+35adx+56(2bx)=x2423x23+ax35+2x56bx2256=9443+2+2a+2(65)b2(3625)=541+2a+211b2=94+2a11b2F(x) = \int\limits_{ - \infty }^2 {0dx} + \int\limits_2^3 {\frac{1}{2}(x - 2)dx} + \int\limits_3^5 {adx} + \int\limits_5^6 {\left( {2 - bx} \right)} = \left. {\frac{{{x^2}}}{4}} \right|_2^3 - \left. x \right|_2^3 + a\left. x \right|_3^5 + 2\left. x \right|_5^6 - \left. {\frac{{b{x^2}}}{2}} \right|_5^6 = \frac{{9 - 4}}{4} - 3 + 2 + 2a + 2(6 - 5) - \frac{b}{2}(36 - 25) = \frac{5}{4} - 1 + 2a + 2 - \frac{{11b}}{2} = \frac{9}{4} + 2a - \frac{{11b}}{2}

Then F(x)={0,x<2x24x+1,2x3ax3a+14,3<x5bx22+2x+2a+25b2394,5<x694+2a11b2,x>6F(x) = \left\{ {\begin{matrix} {0,\,\,x < 2}\\ {\frac{{{x^2}}}{4} - x + 1,\,\,2 \le x \le 3}\\ {ax - 3a + \frac{1}{4},\,\,3 < x \le 5}\\ { - \frac{{b{x^2}}}{2} + 2x + 2a + \frac{{25b}}{2} - \frac{{39}}{4},\,\,5 < x \le 6}\\ {\frac{9}{4} + 2a - \frac{{11b}}{2},\,\,x > 6} \end{matrix}} \right.

By the properties of the distribution function

limx30F(x)=limx3+0F(x)3243+1=3a3a+14\mathop {\lim }\limits_{x \to 3 - 0} F(x) = \mathop {\lim }\limits_{x \to 3 + 0} F(x) \Rightarrow \frac{{{3^2}}}{4} - 3 + 1 = 3a - 3a + \frac{1}{4}

limx50F(x)=limx5+0F(x)5a3a+14=25b2+10+2a+25b2394\mathop {\lim }\limits_{x \to 5 - 0} F(x) = \mathop {\lim }\limits_{x \to 5 + 0} F(x) \Rightarrow 5a - 3a + \frac{1}{4} = - \frac{{25b}}{2} + 10 + 2a + \frac{{25b}}{2} - \frac{{39}}{4}

limx60F(x)=limx6+0F(x)36b2+12+2a+25b2394=94+2a11b2\mathop {\lim }\limits_{x \to 6 - 0} F(x) = \mathop {\lim }\limits_{x \to 6 + 0} F(x) \Rightarrow - \frac{{36b}}{2} + 12 + 2a + \frac{{25b}}{2} - \frac{{39}}{4} = \frac{9}{4} + 2a - \frac{{11b}}{2}

F()=194+2a11b2=1F(\infty ) = 1 \Rightarrow \frac{9}{4} + 2a - \frac{{11b}}{2} = 1

We have the system of equations:

{3243+1=3a3a+145a3a+14=25b2+10+2a+25b239436b2+12+2a+25b2394=94+2a11b294+2a11b2=1\left\{ \begin{array}{l} \frac{{{3^2}}}{4} - 3 + 1 = 3a - 3a + \frac{1}{4}\\ 5a - 3a + \frac{1}{4} = - \frac{{25b}}{2} + 10 + 2a + \frac{{25b}}{2} - \frac{{39}}{4}\\ - \frac{{36b}}{2} + 12 + 2a + \frac{{25b}}{2} - \frac{{39}}{4} = \frac{9}{4} + 2a - \frac{{11b}}{2}\\ \frac{9}{4} + 2a - \frac{{11b}}{2} = 1 \end{array} \right.


{14=142a+14=2a+1411b2+94+2a=94+2a11b22a11b2=54\left\{ \begin{array}{l} \frac{1}{4} = \frac{1}{4}\\ 2a + \frac{1}{4} = 2a + \frac{1}{4}\\ - \frac{{11b}}{2} + \frac{9}{4} + 2a = \frac{9}{4} + 2a - \frac{{11b}}{2}\\ 2a - \frac{{11b}}{2} = - \frac{5}{4} \end{array} \right.


2a11b2=548a22b=5a=5+22b82a - \frac{{11b}}{2} = - \frac{5}{4} \Rightarrow 8a - 22b = - 5 \Rightarrow a = \frac{{ - 5 + 22b}}{8}

This equation has an infinite number of solutions. Let's find any particular solution.

Let b=522a=0b = \frac{5}{{22}} \Rightarrow a = 0

Then

f(x)={12(x2),2x30,3<x52522x,5<x60,otherwisef(x) = \left\{ {\begin{matrix} {\frac{1}{2}(x - 2),\,\,2 \le x \le 3}\\ {0,\,\,3 < x \le 5}\\ {2 - \frac{5}{{22}}x,\,\,5 < x \le 6}\\ {0,\,\,otherwise} \end{matrix}} \right.

F(x)={0,x<2x24x+1,2x300+14,3<x55x244+2x+12544394,5<x6945544,x>6={0,x<2x24x+1,2x300+14,3<x55x244+2x7611,5<x61,x>6F(x) = \left\{ {\begin{matrix} {0,\,\,x < 2}\\ {\frac{{{x^2}}}{4} - x + 1,\,\,2 \le x \le 3}\\ {0 - 0 + \frac{1}{4},\,\,3 < x \le 5}\\ { - \frac{{5{x^2}}}{{44}} + 2x + \frac{{125}}{{44}} - \frac{{39}}{4},\,\,5 < x \le 6}\\ {\frac{9}{4} - \frac{{55}}{{44}},\,\,x > 6} \end{matrix}} \right.= \left\{ {\begin{matrix} {0,\,\,x < 2}\\ {\frac{{{x^2}}}{4} - x + 1,\,\,2 \le x \le 3}\\ {0 - 0 + \frac{1}{4},\,\,3 < x \le 5}\\ { - \frac{{5{x^2}}}{{44}} + 2x - \frac{{76}}{{11}},\,\,\,5 < x \le 6}\\ {1,\,\,x > 6} \end{matrix}} \right.

sketch the graph of f(x):





sketch the graph of F(x):



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS