Question #169390

1.     Suppose that U is a random variable giving the number of tails minus the number of heads in three (3) tosses of a coin. List the elements of the sample space S for three (3) tosses of the coin and to each sample point assign a value u of U. 



1
Expert's answer
2021-03-09T02:29:54-0500

The sample space S for the three tosses of the coin is:



S={HHH,HHT,HTH,HTT,THH,THT,TTH,TTT}S=\{{HHH,HHT,HTH,HTT,THH,THT,TTH,TTT} \}



Let UU be a random variable giving the number of tails minus the number of heads in three tosses of a coin, we assign a value of uu of UU to each sample point in the following way: 



Sample pointsuHHH3HHT1HTH1HTT1THH1THT1TTH1TTT3\begin{array}{cc} \text{Sample points} & & u\\ HHH & & -3 \\HHT & & -1 \\HTH & & -1 \\HTT & & 1 \\THH & & -1 \\THT & & 1 \\TTH & & 1\\ TTT & & 3 \end{array}



The sample space for UU is



SU={3,1,1,3}S_U=\{{-3, -1, 1, 3} \}


corresponding to 3H,2H1T,1H2T3H,2H 1T,1H2T and 3T3T respectively.


P(3 heads & 0 tails)=(30)(12)0(12)3=18P(3\ heads\ \&\ 0\ tails)=\binom{3}{0}({1 \over 2})^0({1 \over 2})^3={1 \over 8}


P(2heads& 1tails)=(31)(12)1(12)2=38P(2heads \&\ 1 tails)= \binom{3}{1}({1\over 2})^1({1\over2})^2={3\over8}


P(1 heads& 2 tails)=(32)(12)2(12)1=38P(1\ heads \& \ 2\ t ails)=\binom{3}{2}({1\over 2})^2({1\over 2})^1={3\over 8}


P(0 heads& 3 tails)=(33)(12)3(12)0=18P(0\ heads \& \ 3\ t ails)=\binom{3}{3}({1\over 2})^3({1\over 2})^0={1\over 8}



P(W=3)=18P(W=-3)={1 \over 8}P(W=1)=38P(W=-1)={3 \over 8}P(W=1)=38P(W=1)={3\over 8}P(W=3)=18P(W=3)={1 \over 8}














Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS