The probabilities of a machine manufacturing 0, 1, 2, 3, 4, or 5defective parts in one day are 0.75, 0.17, 0.04, 0.025, 0.01, and 0.005, respectively. The computed variance is _____ and standard deviation is _____ of the distribution.
NOTE: Round off your answer to the nearest hundredths
The expected value "\u03bc = 0 \\times 0.75 + 1 \\times 0.17 + 2 \\times 0.04 + 3 \\times 0.025 + 4 \\times 0.01 + 5 \\times 0.005"
"= 0 + 0.17 + 0.08 + 0.075 + 0.04 + 0.025 \\\\\n\n= 0.39"
Variance:
"\u03c3^2 = (0-0.39)^2 \\times 0.75 + (1-0.39)^2 \\times 0.17 + (2-0.39)^ \\times 0.04 + (3-0.39)^2 \\times 0.025 + (4-0.39)^2 \\times 0.01 + (5-0.39)^2 \\times 0.005 \\\\\n\n= 0.114 + 0.063 + 0.103 + 0.170 + 0.130 + 0.106 \\\\\n\n= 0.686"
The standard deviation:
"\u03c3 = \\sqrt{\u03c3^2}\n\n= \\sqrt{0.686} = 0.828"
The computed variance is 0.686 and standard deviation is 0.828 of the distribution.
Comments
Leave a comment