Answer to Question #167369 in Statistics and Probability for Louise Olowa

Question #167369

A random sample is drawn from a population of known standard deviation 11.3. Construct a 90% confidence interval for the population mean based on the information given (not all of the information given need be used).


n = 36, x ̅=105.2, s = 11.2


n = 100, x ̅=105.2, s = 11.2


1
Expert's answer
2021-03-01T07:10:42-0500

a.

90%CI=(xˉ1.645sn,  xˉ+1.645sn)90\%CI=(\bar x-1.645\frac{s}{\sqrt{n}},\;\bar x+1.645\frac{s}{\sqrt{n}})


=(105.21.64511.236,  105.2+1.64511.236)=(105.2-1.645\frac{11.2}{\sqrt{36}},\;105.2+1.645\frac{11.2}{\sqrt{36}})


=(102.13,  108.27).=(102.13,\;108.27).



b.

90%CI=(xˉ1.645sn,  xˉ+1.645sn)90\%CI=(\bar x-1.645\frac{s}{\sqrt{n}},\;\bar x+1.645\frac{s}{\sqrt{n}})


=(105.21.64511.2100,  105.2+1.64511.2100)=(105.2-1.645\frac{11.2}{\sqrt{100}},\;105.2+1.645\frac{11.2}{\sqrt{100}})


=(103.36,  107.04).=(103.36,\;107.04).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment