(i) E[X]=181i=1∑18xi=745/18=41.39
E[X2]=181i=1∑18xi2=33951/18=1886.17
Var[X]=E[X2]−E[X]2=1886.17−41.392=173.13
σ(X)=Var[X]=173.13=13.16
(ii) Let X' denotes ages of the remaining 17 people. We may assume that the person who left the group was of age x18.
Then E[X′]=171i=1∑17xi=41 implies i=1∑17xi=41⋅17=697 and x18=i=1∑18xi−i=1∑17xi=745−697=48
i=1∑17xi2=i=1∑18xi2−x182=33951−482=31647
E[X′2]=171i=1∑17xi2=31647/17=1861.59
Var[X′]=E[X′2]−E[X′]2=1861.59−412=180.59
σ(X′)=Var[X′]=180.59=13.44
Answer. (i) The mean and standard deviation of the ages of this group of people are E[X]=41.39 , σ(X)=13.16.
(ii) The age of the person who left is 48, the standard deviation of the ages of the remaining 17 people is σ(X′)=13.44.
Comments
Leave a comment