(i) E [ X ] = 1 18 ∑ i = 1 18 x i = 745 / 18 = 41.39 E[X]=\frac{1}{18}\sum\limits_{i=1}^{18}x_i=745/18=41.39 E [ X ] = 18 1 i = 1 ∑ 18 x i = 745/18 = 41.39
E [ X 2 ] = 1 18 ∑ i = 1 18 x i 2 = 33951 / 18 = 1886.17 E[X^2]=\frac{1}{18}\sum\limits_{i=1}^{18}x_i^2=33951/18=1886.17 E [ X 2 ] = 18 1 i = 1 ∑ 18 x i 2 = 33951/18 = 1886.17
V a r [ X ] = E [ X 2 ] − E [ X ] 2 = 1886.17 − 41.3 9 2 = 173.13 Var[X]=E[X^2]-E[X]^2=1886.17-41.39^2=173.13 Va r [ X ] = E [ X 2 ] − E [ X ] 2 = 1886.17 − 41.3 9 2 = 173.13
σ ( X ) = V a r [ X ] = 173.13 = 13.16 \sigma(X)=\sqrt{Var[X]}=\sqrt{173.13}=13.16 σ ( X ) = Va r [ X ] = 173.13 = 13.16
(ii) Let X' denotes ages of the remaining 17 people. We may assume that the person who left the group was of age x 18 x_{18} x 18 .
Then E [ X ′ ] = 1 17 ∑ i = 1 17 x i = 41 E[X']=\frac{1}{17}\sum\limits_{i=1}^{17}x_i=41 E [ X ′ ] = 17 1 i = 1 ∑ 17 x i = 41 implies ∑ i = 1 17 x i = 41 ⋅ 17 = 697 \sum\limits_{i=1}^{17}x_i=41\cdot 17=697 i = 1 ∑ 17 x i = 41 ⋅ 17 = 697 and x 18 = ∑ i = 1 18 x i − ∑ i = 1 17 x i = 745 − 697 = 48 x_{18}=\sum\limits_{i=1}^{18}x_i-\sum\limits_{i=1}^{17}x_i=745-697=48 x 18 = i = 1 ∑ 18 x i − i = 1 ∑ 17 x i = 745 − 697 = 48
∑ i = 1 17 x i 2 = ∑ i = 1 18 x i 2 − x 18 2 = 33951 − 4 8 2 = 31647 \sum\limits_{i=1}^{17}x_i^2=\sum\limits_{i=1}^{18}x_i^2-x_{18}^2=33951-48^2=31647 i = 1 ∑ 17 x i 2 = i = 1 ∑ 18 x i 2 − x 18 2 = 33951 − 4 8 2 = 31647
E [ X ′ 2 ] = 1 17 ∑ i = 1 17 x i 2 = 31647 / 17 = 1861.59 E[X'^2]=\frac{1}{17}\sum\limits_{i=1}^{17}x_i^2=31647/17=1861.59 E [ X ′2 ] = 17 1 i = 1 ∑ 17 x i 2 = 31647/17 = 1861.59
V a r [ X ′ ] = E [ X ′ 2 ] − E [ X ′ ] 2 = 1861.59 − 4 1 2 = 180.59 Var[X']=E[X'^2]-E[X']^2=1861.59-41^2=180.59 Va r [ X ′ ] = E [ X ′2 ] − E [ X ′ ] 2 = 1861.59 − 4 1 2 = 180.59
σ ( X ′ ) = V a r [ X ′ ] = 180.59 = 13.44 \sigma(X')=\sqrt{Var[X']}=\sqrt{180.59}=13.44 σ ( X ′ ) = Va r [ X ′ ] = 180.59 = 13.44
Answer . (i) The mean and standard deviation of the ages of this group of people are E [ X ] = 41.39 E[X]=41.39 E [ X ] = 41.39 , σ ( X ) = 13.16 \sigma(X)=13.16 σ ( X ) = 13.16 .
(ii) The age of the person who left is 48, the standard deviation of the ages of the remaining 17 people is σ ( X ′ ) = 13.44 \sigma(X')=13.44 σ ( X ′ ) = 13.44 .
Comments