(a) Let X be a random variable with the following probability distribution x -3 6 9 f(x) 1 6 1 2 1 3 Find the mean and variance of Y = 3X + 2. (b) If X ∼ Bin(6, 1 3 ) and Y ∼ N( 1 2 , 1 4 ) are independent random variables, find the mean and variance of the random variable W = 2X − 4Y + 5.
Solution
a).
"E(y) = 3E(x)+2""E(x) =(3*{1 \\over 6}) + (6*{1 \\over 2})+(9*{1 \\over 3})""=6.5"
Mean =21.5
"var(x) = \\sum x^2 P(X=x) - {(E(x))} ^2""=(3^2*{1 \\over 6}) +(6^2*{1\\over 2})+(9^2*{1 \\over 3})- 6.5^2"
"var(x) =4.25"
b)
"E(W) = 2E(X)-4E(Y)+5""E(X) = np = 6({1 \\over 3}) =2""E(Y) ={1 \\over 2}""E(W) =(2*2)- 4({1\\over 2})+5"
E(W) = 7
But "Cov(xy) =0"
"Var(x) =np(1-p) =6*{1 \\over 3}*{2 \\over 3}={4 \\over 3}"
"Var(y) ={1\\over 4}"
Var(W) =9.33333333
Comments
Leave a comment