Question #165062

(a) Let X be a random variable with the following probability distribution x -3 6 9 f(x) 1 6 1 2 1 3 Find the mean and variance of Y = 3X + 2. (b) If X ∼ Bin(6, 1 3 ) and Y ∼ N( 1 2 , 1 4 ) are independent random variables, find the mean and variance of the random variable W = 2X − 4Y + 5.


1
Expert's answer
2021-02-24T07:45:04-0500

Solution

a).

E(y)=3E(x)+2E(y) = 3E(x)+2E(x)=(316)+(612)+(913)E(x) =(3*{1 \over 6}) + (6*{1 \over 2})+(9*{1 \over 3})

=6.5=6.5


E(y)=3(6.5)+2E(y) = 3(6.5)+2

Mean =21.5



Var(y)=32var(x)=9var(x)Var(y) = 3^2 var(x) = 9var(x)

var(x)=x2P(X=x)(E(x))2var(x) = \sum x^2 P(X=x) - {(E(x))} ^2=(3216)+(6212)+(9213)6.52=(3^2*{1 \over 6}) +(6^2*{1\over 2})+(9^2*{1 \over 3})- 6.5^2

var(x)=4.25var(x) =4.25


var(y)=9(4.25)=38.25var(y) = 9(4.25) = 38.25

b)

E(W)=2E(X)4E(Y)+5E(W) = 2E(X)-4E(Y)+5E(X)=np=6(13)=2E(X) = np = 6({1 \over 3}) =2E(Y)=12E(Y) ={1 \over 2}

E(W)=(22)4(12)+5E(W) =(2*2)- 4({1\over 2})+5

E(W) = 7


var(w)=22var(x)+42var(y)2(24)cov(xy)var(w) = 2^2 var(x) + 4^2 var(y) - 2(2*4) cov(xy)

But Cov(xy)=0Cov(xy) =0


var(w)=4var(x)+16var(y)\therefore var(w) =4var(x)+16var(y)

Var(x)=np(1p)=61323=43Var(x) =np(1-p) =6*{1 \over 3}*{2 \over 3}={4 \over 3}

Var(y)=14Var(y) ={1\over 4}


Var(W)=4(43)+16(14)Var(W) =4({4 \over 3}) +16({1 \over 4})

Var(W) =9.33333333


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS