for a binomial distribution \text{for a binomial distribution} for a binomial distribution
mean μ of a binomial \text{mean μ of a binomial } mean μ of a binomial
μ = n p \mu=np μ = n p
standard deviation of a binomial \text{standard deviation of a binomial} standard deviation of a binomial
σ = n p ( 1 − p \sigma=\sqrt{np(1-p} σ = n p ( 1 − p
For a normal distribution, μ should be 3 standard deviations away from 0 and n \text{For a normal distribution, μ should be 3 standard deviations away from 0 and n} For a normal distribution, μ should be 3 standard deviations away from 0 and n
μ − 3 n p ( 1 − p ) > 0 or \mu- 3\sqrt{np(1-p)} > 0 \text{ or} μ − 3 n p ( 1 − p ) > 0 or
n p > 9 ( 1 − p ) ; ( 1 ) np>9(1-p);(1) n p > 9 ( 1 − p ) ; ( 1 )
μ + 3 n p ( 1 − p ) < n or \mu+3\sqrt{np(1-p)}<n \text{or} μ + 3 n p ( 1 − p ) < n or
n ( 1 − p ) > 9 p ; n q > 9 p ( 2 ) n(1-p)>9p;nq>9p(2) n ( 1 − p ) > 9 p ; n q > 9 p ( 2 )
n p = 33 ∗ 0.2 = 6.6 np = 33*0.2=6.6 n p = 33 ∗ 0.2 = 6.6
n p < 9 ( 1 − 0.2 ) = 7.2 np <9(1-0.2)=7.2 n p < 9 ( 1 − 0.2 ) = 7.2
n q = 33 ∗ ( 1 − 0.2 ) = 26.4 nq =33*(1-0.2)=26.4 n q = 33 ∗ ( 1 − 0.2 ) = 26.4
n q > 9 p = 1.8 nq>9p=1.8 n q > 9 p = 1.8
сondition(1) not met \text{сondition(1) not met} с ondition(1) not met
it is not possible to approximate p ^ \text{it is not possible to approximate } \hat{p} it is not possible to approximate p ^
by a normal distribution \text{by a normal distribution} by a normal distribution
Answer: it is not possible to approximate a binomial experiment to a normal distribution
np = 6.6 nq =26.4
Comments