Question #163215

Supppose we have a binomial experiment in which success is defined to be a particular quality or attribute that interest us.

  • Suppose n =33 and p=0.20. Can we approximate p^ by a normal distribution?why? Np=
  • Nq=
1
Expert's answer
2021-02-24T06:52:22-0500

for a binomial distribution\text{for a binomial distribution}

mean μ of a binomial \text{mean μ of a binomial }

μ=np\mu=np

standard deviation of a binomial\text{standard deviation of a binomial}

σ=np(1p\sigma=\sqrt{np(1-p}

For a normal distribution, μ should be 3 standard deviations away from 0 and n\text{For a normal distribution, μ should be 3 standard deviations away from 0 and n}

μ3np(1p)>0 or\mu- 3\sqrt{np(1-p)} > 0 \text{ or}

np>9(1p);(1)np>9(1-p);(1)

μ+3np(1p)<nor\mu+3\sqrt{np(1-p)}<n \text{or}

n(1p)>9p;nq>9p(2)n(1-p)>9p;nq>9p(2)


np=330.2=6.6np = 33*0.2=6.6

np<9(10.2)=7.2np <9(1-0.2)=7.2

nq=33(10.2)=26.4nq =33*(1-0.2)=26.4

nq>9p=1.8nq>9p=1.8

сondition(1) not met\text{сondition(1) not met}

it is not possible to approximate p^\text{it is not possible to approximate } \hat{p}

by a normal distribution\text{by a normal distribution}

Answer:it is not possible to approximate a binomial experiment to a normal distribution

np = 6.6 nq =26.4










Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS