Answer to Question #162652 in Statistics and Probability for Sunny

Question #162652

Assuming GMAT scores are normally distributed having mean of 540 and standard deviation of 100, find the probability of obtaining

a. A score of 750 or higher?

b. A score of 590 or less?

c. A score of 540 or less?




1
Expert's answer
2021-02-24T12:41:08-0500

Let Φ\varPhi be the CDF of the standard normal distribution. Let ξ\xi be a random variable such that mean(ξ)=540mean \lparen \xi \rparen = 540 and std(ξ)=100std \lparen \xi \rparen = 100.

a) The probability of obtaining a score of 750 or less is equal to P(ξ750)={P \lparen \xi \geq 750 \rparen = \lbrace the compliment rule }=1P(ξ<750)==1P(ξmean(ξ)std(ξ)<750mean(ξ)std(ξ))==1P(ξ540100<750540100)==1P(ξ540100<2.1)==1Φ(2.1)10.9821=0.0179\rbrace = 1 - P \lparen \xi \lt 750 \rparen = \\ = 1 - P \lparen \frac{\xi - mean \lparen \xi \rparen}{std \lparen \xi \rparen} \lt \frac{750 - mean \lparen \xi \rparen}{std \lparen \xi \rparen} \rparen = \\ = 1 - P \lparen \frac{\xi - 540}{100} \lt \frac{750 - 540}{100} \rparen = \\ = 1 - P \lparen \frac{\xi - 540}{100} \lt 2.1\rparen = \\ =1 - \varPhi \lparen 2.1 \rparen \approx \\ \approx 1 - 0.9821 = 0.0179

b) The probability of obtaining a score of 590 or less is equal to P(ξ590)==P(ξ<590)+P(ξ=590)={P \lparen \xi \leq 590 \rparen = \\ = P \lparen \xi \lt 590 \rparen + P \lparen \xi = 590 \rparen = \lbrace the normal distribution is a type of continuous probability distribution, so P(ξ=590)=0}==P(ξ<590)==P(ξ540100<0.5)==Φ(0.5)0.6915P \lparen \xi = 590 \rparen = 0 \rbrace = \\ = P \lparen \xi \lt 590 \rparen = \\ = P \lparen \frac{\xi - 540}{100} < 0.5 \rparen = \\ = \varPhi \lparen 0.5 \rparen \approx 0.6915

c) The probability of obtaining a score of 540 or less is equal to P(ξ540)==P(ξ<540)==P(ξ540100<0)==Φ(0)=0.5P \lparen \xi \leq 540 \rparen = \\ = P \lparen \xi \lt 540 \rparen = \\ = P \lparen \frac{\xi - 540}{100} < 0 \rparen = \\ = \varPhi \lparen 0 \rparen = 0.5


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment