Let X = X= X = the number of of workers agree: X ∼ B i n ( n , p ) X\sim Bin(n, p) X ∼ B in ( n , p )
P ( X = x ) = ( n x ) p x ( 1 − p ) n − x P(X=x)=\dbinom{n}{x}p^x(1-p)^{n-x} P ( X = x ) = ( x n ) p x ( 1 − p ) n − x Given n = 18 , p = 0.58 n=18, p=0.58 n = 18 , p = 0.58
i.
P ( X ≥ 5 ) = 1 − P ( X < 5 ) P(X\geq5)=1-P(X<5) P ( X ≥ 5 ) = 1 − P ( X < 5 )
= 1 − P ( X = 0 ) − P ( X = 1 ) − P ( X = 2 ) =1-P(X=0)-P(X=1)-P(X=2) = 1 − P ( X = 0 ) − P ( X = 1 ) − P ( X = 2 )
− P ( X = 3 ) − P ( X = 4 ) -P(X=3)-P(X=4) − P ( X = 3 ) − P ( X = 4 ) P ( X = 0 ) ≈ 1.65 × 1 0 − 7 P(X=0)\approx1.65\times 10^{-7} P ( X = 0 ) ≈ 1.65 × 1 0 − 7
P ( X = 1 ) ≈ 4.11 × 1 0 − 6 P(X=1)\approx4.11\times 10^{-6} P ( X = 1 ) ≈ 4.11 × 1 0 − 6
P ( X = 2 ) = 0.0000482543 P(X=2)=0.0000482543 P ( X = 2 ) = 0.0000482543
P ( X = 3 ) = 0.00035539679 P(X=3)=0.00035539679 P ( X = 3 ) = 0.00035539679
P ( X = 4 ) = 0.00184044764 P(X=4)=0.00184044764 P ( X = 4 ) = 0.00184044764
P ( X ≥ 5 ) ≈ 0.99775162498 P(X\geq5)\approx0.99775162498 P ( X ≥ 5 ) ≈ 0.99775162498 ii.
P ( 4 ≤ X ≤ 12 ) = 1 − P ( X < 4 ) − P ( X > 12 ) P(4\leq X\leq12)=1-P(X<4)-P(X>12) P ( 4 ≤ X ≤ 12 ) = 1 − P ( X < 4 ) − P ( X > 12 )
= 1 − 0.00040792739 − 0.1628374012 =1-0.00040792739-0.1628374012 = 1 − 0.00040792739 − 0.1628374012
= 0.1628374012 =0.1628374012 = 0.1628374012 iii.
P ( X ≤ 8 ) = 0.176778472 P(X\leq8)=0.176778472 P ( X ≤ 8 ) = 0.176778472
iv.
m e a n = E ( X ) = n p = 18 ( 0.58 ) = 10.44 mean=E(X)=np=18(0.58)=10.44 m e an = E ( X ) = n p = 18 ( 0.58 ) = 10.44
σ 2 = n p ( 1 − p ) = 18 ( 0.58 ) ( 1 − 0.58 ) \sigma^2=np(1-p)=18(0.58)(1-0.58) σ 2 = n p ( 1 − p ) = 18 ( 0.58 ) ( 1 − 0.58 )
= 4.3848 =4.3848 = 4.3848
σ = σ 2 = 4.3848 ≈ 2.0940 \sigma=\sqrt{\sigma^2}=\sqrt{4.3848}\approx2.0940 σ = σ 2 = 4.3848 ≈ 2.0940
Comments