Question #157975

Let X be a random variable with the following probability distribution:

x : 3 6 9

P(X=x) : 1/6 1/2 1/3

Find E(X) and E(X^2)and using the laws of expectation, evaluate E . (2X+1)^2.


1
Expert's answer
2021-01-26T04:12:55-0500

E(X)=i=39XiP(Xi)E(X)=\sum{_{i=3}^9}XiP(Xi)

=3(16)+6(12)+9(13)=3(\frac{1}{6})+6(\frac{1}{2})+9(\frac{1}{3})

=12+3+3=\frac{1}{2}+3+3

=612=6\frac{1}{2}

E(X2)=i=39Xi2P(Xi)E(X^2)=\sum{_{i=3}^9}Xi^2P(Xi)

=9(16)+36(12)+81(13)=9(\frac{1}{6})+36(\frac{1}{2})+81(\frac{1}{3})

=32+18+27=\frac{3}{2}+18+27

=4612=46\frac{1}{2}

E(2X+1)2=E[(2X+1)(2X+1)]E(2X+1)^2=E[(2X+1)(2X+1)]

=E(4X2+4X+1)=E(4X^2+4X+1)

=4E(X2)+4E(X)+1=4E(X^2)+4E(X)+1

=(4612×4)+(4×612)+1=(46\frac{1}{2}×4)+(4×6\frac{1}{2})+1

=186+26+1=186+26+1

=213=213


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS