Let X be a random variable with the following probability distribution:
x : 3 6 9
P(X=x) : 1/6 1/2 1/3
Find E(X) and E(X^2)and using the laws of expectation, evaluate E . (2X+1)^2.
E(X)=∑i=39XiP(Xi)E(X)=\sum{_{i=3}^9}XiP(Xi)E(X)=∑i=39XiP(Xi)
=3(16)+6(12)+9(13)=3(\frac{1}{6})+6(\frac{1}{2})+9(\frac{1}{3})=3(61)+6(21)+9(31)
=12+3+3=\frac{1}{2}+3+3=21+3+3
=612=6\frac{1}{2}=621
E(X2)=∑i=39Xi2P(Xi)E(X^2)=\sum{_{i=3}^9}Xi^2P(Xi)E(X2)=∑i=39Xi2P(Xi)
=9(16)+36(12)+81(13)=9(\frac{1}{6})+36(\frac{1}{2})+81(\frac{1}{3})=9(61)+36(21)+81(31)
=32+18+27=\frac{3}{2}+18+27=23+18+27
=4612=46\frac{1}{2}=4621
E(2X+1)2=E[(2X+1)(2X+1)]E(2X+1)^2=E[(2X+1)(2X+1)]E(2X+1)2=E[(2X+1)(2X+1)]
=E(4X2+4X+1)=E(4X^2+4X+1)=E(4X2+4X+1)
=4E(X2)+4E(X)+1=4E(X^2)+4E(X)+1=4E(X2)+4E(X)+1
=(4612×4)+(4×612)+1=(46\frac{1}{2}×4)+(4×6\frac{1}{2})+1=(4621×4)+(4×621)+1
=186+26+1=186+26+1=186+26+1
=213=213=213
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments