Let X be a random variable with the following probability distribution:
x : 3 6 9
P(X=x) : 1/6 1/2 1/3
Find E(X) and E(X^2)and using the laws of expectation, evaluate E . (2X+1)^2.
"E(X)=\\sum{_{i=3}^9}XiP(Xi)"
"=3(\\frac{1}{6})+6(\\frac{1}{2})+9(\\frac{1}{3})"
"=\\frac{1}{2}+3+3"
"=6\\frac{1}{2}"
"E(X^2)=\\sum{_{i=3}^9}Xi^2P(Xi)"
"=9(\\frac{1}{6})+36(\\frac{1}{2})+81(\\frac{1}{3})"
"=\\frac{3}{2}+18+27"
"=46\\frac{1}{2}"
"E(2X+1)^2=E[(2X+1)(2X+1)]"
"=E(4X^2+4X+1)"
"=4E(X^2)+4E(X)+1"
"=(46\\frac{1}{2}\u00d74)+(4\u00d76\\frac{1}{2})+1"
"=186+26+1"
"=213"
Comments
Leave a comment