The formula for Karl's Pearson's cCoefficient is:
r=[n∑i=0nxi2−(∑i=0nxi)2][n∑i=0nyi2−(∑i=0nyi)2]n∑i=0nxiyi−(∑i=0nxi)(∑i=0nyi)
Since there are 4 values fo y and 5 for x, we assume that the last value is for y 0.
We set n=5 and receive:
n∑i=0nxiyi=5⋅(10⋅5+10⋅6+11⋅4+12⋅3+12⋅0)=950
(∑i=0nxi)(∑i=0nyi)=(10+10+11+12+12)(5+6+4+3+0)=55⋅18=990
n∑i=0nxi2−(∑i=0nxi)2=5(102+102+112+122+122)−(10+10+11+12+12)2=
=20
n∑i=0nyi2−(∑i=0nyi)2=5(52+62+42+32+02)−(5+6+4+3+0)2=106
r=20⋅106950−990=−0.8687
Answer:-0.8687
Comments
Leave a comment