Answer to Question #157783 in Statistics and Probability for Ashutosh

Question #157783

Calculate Karl Pearson’s Coefficient of Correlation X 10 10 11 12 12 y 5 6 4 3


1
Expert's answer
2021-01-26T03:41:04-0500

The formula for Karl's Pearson's cCoefficient is:

r=ni=0nxiyi(i=0nxi)(i=0nyi)[ni=0nxi2(i=0nxi)2][ni=0nyi2(i=0nyi)2]r=\frac{n\sum_{i=0}^{n}x_iy_i-(\sum_{i=0}^{n}x_i)(\sum_{i=0}^{n}y_i)}{\sqrt{[n\sum_{i=0}^{n}x^2_i-(\sum_{i=0}^{n}x_i)^2][n\sum_{i=0}^{n}y^2_i-(\sum_{i=0}^{n}y_i)^2]}}

Since there are 4 values fo y and 5 for x, we assume that the last value is for y 0.

We set n=5 and receive:

ni=0nxiyi=5(105+106+114+123+120)=950n\sum_{i=0}^nx_iy_i=5\cdot(10\cdot5+10\cdot6+11\cdot4+12\cdot3+12\cdot0)=950

(i=0nxi)(i=0nyi)=(10+10+11+12+12)(5+6+4+3+0)=5518=990(\sum_{i=0}^{n}x_i)(\sum_{i=0}^{n}y_i)=(10+10+11+12+12)(5+6+4+3+0)=55\cdot18=990

ni=0nxi2(i=0nxi)2=5(102+102+112+122+122)(10+10+11+12+12)2=n\sum_{i=0}^{n}x^2_i-(\sum_{i=0}^{n}x_i)^2=5(10^2+10^2+11^2+12^2+12^2)-(10+10+11+12+12)^2=

=20=20

ni=0nyi2(i=0nyi)2=5(52+62+42+32+02)(5+6+4+3+0)2=106n\sum_{i=0}^{n}y^2_i-(\sum_{i=0}^{n}y_i)^2=5(5^2+6^2+4^2+3^2+0^2)-(5+6+4+3+0)^2=106

r=95099020106=0.8687r=\frac{950-990}{\sqrt{20\cdot106}}=-0.8687

Answer:-0.8687


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment