An automatic coffee machine is programmed so that it produced an average of 200 ml per cup. The amount of coffee follows a normal distribution with standard deviation equal to 10ml. if 25% of the drinks are below k value, find the value of k?
"P(Z<z)=0.25\\to z=-0.6745."
"\\frac{k-\\mu}{\\sigma}=z."
"\\frac{k-200}{10}=-0.6745."
"k=200-0.6745*10=193.255\\;ml."
Comments
Leave a comment