Question #155416

Problem 1

Calculate and interpret the correlation coefficient of the two variables below.

Person

Hand

Height


A

17

150


B

15

154


C

19

169


D

17

172


E

21

175



1
Expert's answer
2021-06-24T18:32:44-0400

Pearson Correlation coefficient



r=(xixˉ)(yiyˉ)(xixˉ)2(yiyˉ)2r = \frac{\sum(x_i - \bar x) (y_i - \bar y)}{\sum(x_i - \bar x)^2 \sum(y_i - \bar y)^2}

Let x be hand and y be heightx\ be\ hand \ and \ y\ be\ height


xˉ=17+15+19+17+215=17.8\bar x =\frac{17+15+19+17+21}{5}= 17.8

yˉ=150+154+169+172+1755=164\bar y = \frac{150+154+169+172+175}{5}=164


(xixˉ)(yiyˉ)=(1717.8)(150164)+(2517.8)(154164)+(1917.8)(169164)+(1717.8)(172164)+(2117.8)(175164)\sum(x_i - \bar x) (y_i - \bar y)=(17-17.8)(150-164)+(25-17.8) (154-164)+(19-17.8)(169-164)+(17-17.8)(172-164)+(21-17.8)(175-164)=26=-26


(xixˉ)2=(1717.8)2+(2517.8)2+(1917.8)2+(1717.8)2+(2117.8)2\sum(x_i - \bar x)^2=(17-17.8)^2+(25-17.8)^2+(19-17.8)^2+(17-17.8)^2+(21-17.8)^2=64.8=64.8


(yiyˉ)2=(150164)2+(154164)2+(169164)2+(172164)2+(175164)2\sum (y_i - \bar y)^2=(150-164)^2+ (154-164)^2+(169-164)^2+(172-164)^2+(175-164)^2=506=506

Therefore


r=2650664.8=0.000793r=\frac{-26}{506*64.8}=-0.000793

Since we have 10 data points, the degrees of freedom are


102=810-2=8

The critical value for the correlation coefficient with 8 degrees of freedom is

+0.632.\underset{-}{+} 0.632. We conclude that the correlation is significant if it is greater than the critical value. In our case, 0.000793>0.632-0.000793 > - 0.632 therefore we can conclude that there is a significant correlation between hand and height


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
12.06.21, 14:52

Dear Saksham, thank you for correcting us.


Saksham
23.05.21, 08:15

For person B hand = 15 not 25 this Change the whole answer.

LATEST TUTORIALS
APPROVED BY CLIENTS