Out of 8000 graduates in a town 800 are females, out of 1600
graduate employees 120 are females. Use 2 at 5% level to
determine if any distinction is made in appointment on the basis
of sex:
"\\dfrac{920\\times1600}{9600}=153.3"
"\\dfrac{8680\\times1600}{9600}=1446.7"
"\\begin{matrix}\n \\text{Number of} & \\text{Number of} & \\text{Total number of} \\\\\n \\text{Female\\ \\ \\ \\ \\ \\ } & \\text{male\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ } & \\text{employees\\ \\ \\ \\ \\ \\ \\ \\ \\ } \\\\\n\\text{employees} & \\text{employees} & \\text{} \n\\end{matrix}""\\begin{matrix}\n 766.7 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ & 7233.3 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ & 8000 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\\\\n 153.3 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ & 1446.7\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ & 1600 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\\\\n 920 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ & 8680\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ & 9600 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\\\\n\\end{matrix}"
Observed value (O)
Expected value(E)
Degree of freedom "=(R-1)(C-1)=(2-1)(2-1)=1"
The critical value of "\\chi^2" at "\\alpha=0.05" for "1" d.f. "=3.841"
Since the calculated value of "\\chi^2" "(9.60)" is greater than the critical value of "\\chi^2" at "\\alpha=0.05" for "1" d.f. "(3.841)," then the null hypothesis is rejected and the alternative hypothesis is accepted.
Therefore there is a distinction is made in appointment on the basis of sex.
Comments
Leave a comment