Question #154866

The number of defective units selected when five units are chosen at random from a batch of ten flash drives which contains four detective items


1
Expert's answer
2021-01-14T17:26:54-0500


(105)=252\dbinom{10}{5}=252

P(X=0)=(65)(40)(105)=6(1)252=142P(X=0)=\dfrac{\dbinom{6}{5}\dbinom{4}{0}}{\dbinom{10}{5}}=\dfrac{6(1)}{252}=\dfrac{1}{42}

P(X=1)=(64)(41)(105)=15(4)252=521P(X=1)=\dfrac{\dbinom{6}{4}\dbinom{4}{1}}{\dbinom{10}{5}}=\dfrac{15(4)}{252}=\dfrac{5}{21}

P(X=2)=(63)(42)(105)=20(6)252=1021P(X=2)=\dfrac{\dbinom{6}{3}\dbinom{4}{2}}{\dbinom{10}{5}}=\dfrac{20(6)}{252}=\dfrac{10}{21}

P(X=3)=(62)(43)(105)=15(4)252=521P(X=3)=\dfrac{\dbinom{6}{2}\dbinom{4}{3}}{\dbinom{10}{5}}=\dfrac{15(4)}{252}=\dfrac{5}{21}

P(X=4)=(61)(44)(105)=6(1)252=142P(X=4)=\dfrac{\dbinom{6}{1}\dbinom{4}{4}}{\dbinom{10}{5}}=\dfrac{6(1)}{252}=\dfrac{1}{42}


x01234p(x)1425211021521142\begin{matrix} x & 0 & 1 & 2 & 3 & 4 \\ \\ p(x) & \dfrac{1}{42} & \dfrac{5}{21} & \dfrac{10}{21} & \dfrac{5}{21} & \dfrac{1}{42} \end{matrix}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
19.01.21, 21:43

Dear Mia Bianca, please use the panel for submitting new questions.

Mia Bianca
19.01.21, 11:17

Let D representing the number of defective units when 5 units are chosen at random from a batch of ten flash drives which contains six defective items. Find the value of random variable D.

LATEST TUTORIALS
APPROVED BY CLIENTS