For the given probability distribution function
X=x 1. 2 3. 4. 5
P[X=x] 0.1 0.3 0.2 0.2 0.2
E(x) =?
E(2x+5) =?
E(x/2+3)=?
E(x 2 )
Find E(X):
solution :
we need to multiply the corresponding X outcomes with the corresponding probabilities, in order to compute the population mean μ.
Therefore, the population mean is calculated as follows:
"\u03bc\n\u200b\t\n \n=\n\n\u200b\t\n \n\u2211 \n\u200b\t\n X \n\n *p(X \ni\n\u200b\t\n )"
=1⋅0.1+2⋅0.3+3⋅0.2+4⋅0.2+5⋅0.2
=3.1
Hence E(X)= 3.1
Find E(2x+5):
Solution :
We know E[aX + b] = aE[X] + b
Hence E(2X+5)= 2E(X)+5
=2(3.1)+5
=11.2
find E(X/2+3)= "\\frac{1}{2}E(X)+3"
="\\frac{1}{2}(3.1)+3"
=4.55
find "E(X^2):"
solution:
we need to multiply the corresponding squares "X^2" of the outcomes with the corresponding probabilities, in order to compute "E(X^2)" :
"E(X ^\n2\n )\n\u200b\t\n \n=\n \n\u2211 \n\t\n X \n^\n2\n\u200b*\t\n p(X \n\n\u200b)"
="1 ^\n2\n \u22c50.1+2 ^\n2\n \u22c50.3+3 ^\n2\n \u22c50.2+4 ^\n2\n \u22c50.2+5 ^\n2\n \u22c50.2=\n11.3"
Comments
Leave a comment