Question #152086
. Set up a 95% confidence interval estimate for the population mean, based on each of the
following sets of data, assuming that the population is normally distributed:
Set 1: 1, 1, 1, 1, 8, 8, 8, 8
Set 2: 1, 2, 3, 4, 5, 6, 7, 8
Explain why these data sets have different confidence intervals even though they have the
same mean and range.
1
Expert's answer
2020-12-21T17:19:11-0500

The critical value for α=0.05\alpha=0.05 is zc=z1α/2=1.96z_c=z_{1-\alpha/2}=1.96

The corresponding confidence interval is computed as shown below:


CI=(xˉzc×σn,xˉ+zc×σn)CI=(\bar{x}-z_c\times\dfrac{\sigma}{\sqrt{n}}, \bar{x}+z_c\times\dfrac{\sigma}{\sqrt{n}})

The confidence interval is equal to two margins of errors and a margin of error is equal to about 2 standard errors (for 95% confidence). A standard error is the standard deviation divided by the square root of the sample size.

The width of the confidence interval increases as the standard deviation increases.


Set 1: 1, 1, 1, 1, 8, 8, 8, 8


mean1=xˉ1mean_1=\bar{x}_1

=1+1+1+1+8+8+8+88=4.5=\dfrac{1+1+1+1+8+8+8+8}{8}=4.5Rank1=81=7Rank_1=8-1=7σ12=18((14.5)2+(14.5)2+(14.5)2+(14.5)2\sigma_1^2=\dfrac{1}{8}((1-4.5)^2+(1-4.5)^2+(1-4.5)^2+(1-4.5)^2

+(84.5)2+(84.5)2+(84.5)2+(84.5)2)+(8-4.5)^2+(8-4.5)^2+(8-4.5)^2+(8-4.5)^2)

=12.25=12.25

σ1=12.25=3.5\sigma_1=\sqrt{12.25}=3.5

CI1=(xˉ1zc×σ1n1,xˉ1+zc×σ1n1)CI_1=(\bar{x}_1-z_c\times\dfrac{\sigma_1}{\sqrt{n_1}}, \bar{x}_1+z_c\times\dfrac{\sigma_1}{\sqrt{n_1}})

=(4.51.96×3.58,4.5+1.96×3.58)=(4.5-1.96\times\dfrac{3.5}{\sqrt{8}}, 4.5+1.96\times\dfrac{3.5}{\sqrt{8}})

=(2.075,6.925)=(2.075,6.925)

Therefore, based on the data provided, the 95% confidence interval for the population mean is 2.075<μ<6.925,2.075<\mu<6.925, which indicates that we are 95% confident that the true population mean μ\mu is contained by the interval (2.075,6.925).(2.075,6.925).


Set 2: 1, 2, 3, 4, 5, 6, 7, 8


mean2=xˉ2mean_2=\bar{x}_2

=1+2+3+4+5+6+7+88=4.5=\dfrac{1+2+3+4+5+6+7+8}{8}=4.5Rank2=81=7Rank_2=8-1=7σ22=18((14.5)2+(24.5)2+(34.5)2+(44.5)2\sigma_2^2=\dfrac{1}{8}((1-4.5)^2+(2-4.5)^2+(3-4.5)^2+(4-4.5)^2

+(54.5)2+(64.5)2+(74.5)2+(84.5)2)+(5-4.5)^2+(6-4.5)^2+(7-4.5)^2+(8-4.5)^2)

=5.25=5.25

σ2=5.252.291288\sigma_2=\sqrt{5.25}\approx2.291288




CI2=(xˉ2zc×σ2n2,xˉ2+zc×σ2n2)CI_2=(\bar{x}_2-z_c\times\dfrac{\sigma_2}{\sqrt{n_2}}, \bar{x}_2+z_c\times\dfrac{\sigma_2}{\sqrt{n_2}})

=(4.51.96×2.2912888,4.5+1.96×2.2912888)=(4.5-1.96\times\dfrac{2.291288}{\sqrt{8}}, 4.5+1.96\times\dfrac{2.291288}{\sqrt{8}})

=(2.912,6.088)=(2.912,6.088)

Therefore, based on the data provided, the 95% confidence interval for the population mean is 2.912<μ<6.088,2.912<\mu<6.088, which indicates that we are 95% confident that the true population mean μ\mu is contained by the interval (2.912,6.088).(2.912,6.088).



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS