Question #151816
In a shipment of bananas, 10% are rejected because they are too small. What is the probability that in a box of 80 bananas at most 8 will be rejected because they are too small?
1
Expert's answer
2020-12-21T19:23:07-0500

Here

n=80n=80

p=10%=0.1p=10\%=0.1

Here x follows the binomial distribution:


P(X=x)=C(n,x)px(1p)nxP(X=x)=C(n,x)\cdot p^x\cdot (1-p)^{n-x}

P(X8)=P(X=0)+P(X=1)+P(X=2)+P(X=3)+P(X=4)+P(X=5)+P(X=6)+P(X=7)+P(X=8)P(X\le8)=P(X=0)+P(X=1)+P(X=2)+P(X=3)+P(X=4)+P(X=5)+P(X=6)+P(X=7)+P(X=8) P(X=0)=C(80,0)0.10(10.1)800=0.00022P(X=0)=C(80,0)\cdot 0.1^0\cdot (1-0.1)^{80-0}=0.00022

P(X=1)=C(80,1)0.110.979=0.00194P(X=1)=C(80,1)\cdot 0.1^1\cdot 0.9^{79}=0.00194P(X=2)=C(80,2)0.120.978=0.00852P(X=2)=C(80,2)\cdot 0.1^2\cdot 0.9^{78}=0.00852

P(X=3)=C(80,3)0.130.977=0.02462P(X=3)=C(80,3)\cdot 0.1^3\cdot 0.9^{77}=0.02462

P(X=4)=C(80,4)0.140.976=0.05266P(X=4)=C(80,4)\cdot 0.1^4\cdot 0.9^{76}=0.05266

P(X=5)=C(80,5)0.150.975=0.08895P(X=5)=C(80,5)\cdot 0.1^5\cdot 0.9^{75}=0.08895

P(X=6)=C(80,6)0.160.974=0.12354P(X=6)=C(80,6)\cdot 0.1^6\cdot 0.9^{74}=0.12354

P(X=7)=C(80,7)0.170.973=0.14510P(X=7)=C(80,7)\cdot 0.1^7\cdot 0.9^{73}=0.14510

P(X=8)=C(80,8)0.180.942=0.14712P(X=8)=C(80,8)\cdot 0.1^8\cdot 0.9^{42}=0.14712

P(X8)=0.00022+0.00194+0.00852+0.02462+0.05266+0.08895+0.12354+0.14510+0.14712=0.59267P(X\le8)=0.00022+0.00194+0.00852+0.02462+0.05266+0.08895+0.12354+0.14510+0.14712=0.59267


Answer: the probability that in a box of 80 bananas at most 8 will be rejected because they are too small is 0.59267.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS