Here
"n=80"
"p=10\\%=0.1"
Here x follows the binomial distribution:
"P(X\\le8)=P(X=0)+P(X=1)+P(X=2)+P(X=3)+P(X=4)+P(X=5)+P(X=6)+P(X=7)+P(X=8)" "P(X=0)=C(80,0)\\cdot 0.1^0\\cdot (1-0.1)^{80-0}=0.00022"
"P(X=1)=C(80,1)\\cdot 0.1^1\\cdot 0.9^{79}=0.00194""P(X=2)=C(80,2)\\cdot 0.1^2\\cdot 0.9^{78}=0.00852"
"P(X=3)=C(80,3)\\cdot 0.1^3\\cdot 0.9^{77}=0.02462"
"P(X=4)=C(80,4)\\cdot 0.1^4\\cdot 0.9^{76}=0.05266"
"P(X=5)=C(80,5)\\cdot 0.1^5\\cdot 0.9^{75}=0.08895"
"P(X=6)=C(80,6)\\cdot 0.1^6\\cdot 0.9^{74}=0.12354"
"P(X=7)=C(80,7)\\cdot 0.1^7\\cdot 0.9^{73}=0.14510"
"P(X=8)=C(80,8)\\cdot 0.1^8\\cdot 0.9^{42}=0.14712"
"P(X\\le8)=0.00022+0.00194+0.00852+0.02462+0.05266+0.08895+0.12354+0.14510+0.14712=0.59267"
Answer: the probability that in a box of 80 bananas at most 8 will be rejected because they are too small is 0.59267.
Comments
Leave a comment