Let's find means of 1st and 5th test:
"\\overline{x_1}=(7+8+4+9+6+5+8+9+4+7)\/10=6.7"
"\\overline{x_5}=(6+6+6+9+7+4+8+7+3+8)\/10=6.4"
To test whether is any significant difference between two means, we need to apply t-test.
"\\vert t \\vert=(\\overline{x_1}-\\overline{x_5})\/(s*\\sqrt{1\/n_1+1\/n_5})"
"n_1=n_5=n=10"
"s_1=\\sqrt{\\frac {\\sum(x-\\overline{x_1})^2} {n-1}}=\\sqrt{\\frac {\\sum(x-\\overline{x_1})^2} {n-1}}=\\sqrt{\\frac {32.1} {9}}=1.889"
"s_5=\\sqrt{\\frac {\\sum(x-\\overline{x_5})^2} {n-1}}=\\sqrt{\\frac {\\sum(x-\\overline{x_5})^2} {n-1}}=\\sqrt{\\frac {30.4} {9}}=1.838"
"s=\\sqrt{(n*s_1^2+n*s_5^2)\/(2n -2)}=\\sqrt{(10*1.889^2+10*1.838^2)\/(2*10 -2)}=\\sqrt{(35.68+33.78)\/(18)}=\\sqrt{3.86}=1.964"
"\\vert t \\vert=(6.7-6.4)\/(1.964*\\sqrt{1\/10+1\/10})=0.342"
As "\\vert t \\vert" is lower than tabulated value (1.734) there is no significant difference between scores of the first and the fifth test.
Answer: no significant improvement
Comments
Leave a comment