Let "X" be a life span of a bulb: "X\\sim N(\\mu, \\sigma^2)"
Then "Z=\\dfrac{X-\\mu}{\\sigma}\\sim N(0,1)"
Given "\\mu=1025\\ h,\\sigma=87\\ h"
a)
"P(X\\geq950)=1-P(X<950)""=1-P(Z<\\dfrac{950-1025}{87})\\approx1-P(Z<0.862069)"
"\\approx1-0.194325=0.805675"
b)
"P(800<X<900)=P(X<900)-P(X\\leq800)""=P(Z<\\dfrac{900-1025}{87})-P(Z<\\dfrac{800-1025}{87})"
"\\approx P(Z<-1.436782)-P(Z<-2.586207)"
"\\approx0.075390-0.004852=0.070538"
Comments
Leave a comment