Answer to Question #150568 in Statistics and Probability for Jim

Question #150568
A manufacturer of light bulbs finds that one light bulb model has a
mean life span of 1025 h with a standard deviation of 87 h. What percent of these
light bulbs will last?
a. at least 950 h?
b.
between 800 and 900 h?
1
Expert's answer
2020-12-15T02:21:09-0500

Let XX be a life span of a bulb: XN(μ,σ2)X\sim N(\mu, \sigma^2)

Then Z=XμσN(0,1)Z=\dfrac{X-\mu}{\sigma}\sim N(0,1)

Given μ=1025 h,σ=87 h\mu=1025\ h,\sigma=87\ h

a)

P(X950)=1P(X<950)P(X\geq950)=1-P(X<950)

=1P(Z<950102587)1P(Z<0.862069)=1-P(Z<\dfrac{950-1025}{87})\approx1-P(Z<0.862069)

10.194325=0.805675\approx1-0.194325=0.805675

b)

P(800<X<900)=P(X<900)P(X800)P(800<X<900)=P(X<900)-P(X\leq800)

=P(Z<900102587)P(Z<800102587)=P(Z<\dfrac{900-1025}{87})-P(Z<\dfrac{800-1025}{87})

P(Z<1.436782)P(Z<2.586207)\approx P(Z<-1.436782)-P(Z<-2.586207)

0.0753900.004852=0.070538\approx0.075390-0.004852=0.070538


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment