"Given \\; that, \u03bc=50, \u03c3=5, then,\\\\\n a) P(49<\\bar x<52)=P(\\frac{49-50}{\\frac{5}{\\sqrt{4}}}<Z<\\frac{52-50}{\\frac{5}{\\sqrt{4}}})\\\\\n=P(-0.4<Z<0.8)\\\\\n=P(0<Z<0.4)+P(0<Z<0.8)\\\\\n=0.1554+0.2881=0.4435\\\\\nb) P(49<\\bar x<52)=P(\\frac{49-50}{\\frac{5}{\\sqrt{16}}}<Z<\\frac{52-50}{\\frac{5}{\\sqrt{16}}})\\\\\n=P(-0.8<Z<1.6)\\\\\n=P(0<Z<0.8)+P(0<Z<1.6)\\\\\n=0.2881+0.4452=0.7333\\\\\nc) P(49<\\bar x<52)=P(\\frac{49-50}{\\frac{5}{\\sqrt{25}}}<Z<\\frac{52-50}{\\frac{5}{\\sqrt{25}}})\\\\\n=P(-1<Z<2)\\\\\n=P(0<Z<1)+P(0<Z<2)\\\\\n=0.3413+0.4772=0.8185\\\\"
Comments
Leave a comment