G i v e n t h a t , μ = 50 , σ = 5 , t h e n , a ) P ( 49 < x ˉ < 52 ) = P ( 49 − 50 5 4 < Z < 52 − 50 5 4 ) = P ( − 0.4 < Z < 0.8 ) = P ( 0 < Z < 0.4 ) + P ( 0 < Z < 0.8 ) = 0.1554 + 0.2881 = 0.4435 b ) P ( 49 < x ˉ < 52 ) = P ( 49 − 50 5 16 < Z < 52 − 50 5 16 ) = P ( − 0.8 < Z < 1.6 ) = P ( 0 < Z < 0.8 ) + P ( 0 < Z < 1.6 ) = 0.2881 + 0.4452 = 0.7333 c ) P ( 49 < x ˉ < 52 ) = P ( 49 − 50 5 25 < Z < 52 − 50 5 25 ) = P ( − 1 < Z < 2 ) = P ( 0 < Z < 1 ) + P ( 0 < Z < 2 ) = 0.3413 + 0.4772 = 0.8185 Given \; that, μ=50, σ=5, then,\\
a) P(49<\bar x<52)=P(\frac{49-50}{\frac{5}{\sqrt{4}}}<Z<\frac{52-50}{\frac{5}{\sqrt{4}}})\\
=P(-0.4<Z<0.8)\\
=P(0<Z<0.4)+P(0<Z<0.8)\\
=0.1554+0.2881=0.4435\\
b) P(49<\bar x<52)=P(\frac{49-50}{\frac{5}{\sqrt{16}}}<Z<\frac{52-50}{\frac{5}{\sqrt{16}}})\\
=P(-0.8<Z<1.6)\\
=P(0<Z<0.8)+P(0<Z<1.6)\\
=0.2881+0.4452=0.7333\\
c) P(49<\bar x<52)=P(\frac{49-50}{\frac{5}{\sqrt{25}}}<Z<\frac{52-50}{\frac{5}{\sqrt{25}}})\\
=P(-1<Z<2)\\
=P(0<Z<1)+P(0<Z<2)\\
=0.3413+0.4772=0.8185\\ G i v e n t ha t , μ = 50 , σ = 5 , t h e n , a ) P ( 49 < x ˉ < 52 ) = P ( 4 5 49 − 50 < Z < 4 5 52 − 50 ) = P ( − 0.4 < Z < 0.8 ) = P ( 0 < Z < 0.4 ) + P ( 0 < Z < 0.8 ) = 0.1554 + 0.2881 = 0.4435 b ) P ( 49 < x ˉ < 52 ) = P ( 16 5 49 − 50 < Z < 16 5 52 − 50 ) = P ( − 0.8 < Z < 1.6 ) = P ( 0 < Z < 0.8 ) + P ( 0 < Z < 1.6 ) = 0.2881 + 0.4452 = 0.7333 c ) P ( 49 < x ˉ < 52 ) = P ( 25 5 49 − 50 < Z < 25 5 52 − 50 ) = P ( − 1 < Z < 2 ) = P ( 0 < Z < 1 ) + P ( 0 < Z < 2 ) = 0.3413 + 0.4772 = 0.8185
Comments