"\\text{For gamma distribution}, \\\\\nE(x)=\\frac{n}{\\lambda}, V(x)=\\frac{n}{\\lambda^2},then,\\\\\n\\frac{n}{\\lambda}=8........(i)\\\\\n\\frac{n}{\\lambda^2}=32.....(ii)\\\\\n\\text{By dividing\\;(i)by(ii)}\\\\\n\\therefore \\lambda=0.25, n=2\\\\\nf(x)=0.0625xe^{-0.25x}, x\\geq 0\\\\\nPr[X>3]=\\int^{\\infty}_{3}0.0625xe^{-0.25x}dx\\\\\n=0.0625[\\frac{-xe^{-0.25x}}{0.25}-\\frac{e^{-0.25x}}{0.0625}]^\\infty_3\\\\\n=0.0625[0-(\\frac{-3e^{-0.25(3)}}{0.25}-\\frac{e^{-0.25(3)}}{0.0625})]\\\\\n\\approx 0.827"
Comments
Leave a comment