Question #149224
Loss amount, X, follows a gamma distribution. You are given E[X] = 8, Var[X] = 32. Calculate the probability that the loss amount exceeds 3, Pr[X>3].
1
Expert's answer
2020-12-08T07:48:57-0500

For gamma distribution,E(x)=nλ,V(x)=nλ2,then,nλ=8........(i)nλ2=32.....(ii)By dividing  (i)by(ii)λ=0.25,n=2f(x)=0.0625xe0.25x,x0Pr[X>3]=30.0625xe0.25xdx=0.0625[xe0.25x0.25e0.25x0.0625]3=0.0625[0(3e0.25(3)0.25e0.25(3)0.0625)]0.827\text{For gamma distribution}, \\ E(x)=\frac{n}{\lambda}, V(x)=\frac{n}{\lambda^2},then,\\ \frac{n}{\lambda}=8........(i)\\ \frac{n}{\lambda^2}=32.....(ii)\\ \text{By dividing\;(i)by(ii)}\\ \therefore \lambda=0.25, n=2\\ f(x)=0.0625xe^{-0.25x}, x\geq 0\\ Pr[X>3]=\int^{\infty}_{3}0.0625xe^{-0.25x}dx\\ =0.0625[\frac{-xe^{-0.25x}}{0.25}-\frac{e^{-0.25x}}{0.0625}]^\infty_3\\ =0.0625[0-(\frac{-3e^{-0.25(3)}}{0.25}-\frac{e^{-0.25(3)}}{0.0625})]\\ \approx 0.827


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS