Answer to Question #149040 in Statistics and Probability for Jp
2020-12-04T23:49:27-05:00
Random variable X has the following probability distribution
X=X -2 -1 0 1
2 3
PAX) 0.1 0.2 2 03 3k
Find
the value of k
(ii) Evaluate P(X2)&P(-2<X2)
Find The Cumulative Distribution Of X
(iv)
Evaluate the Mean of X
1
2020-12-08T06:57:43-0500
"\\begin{matrix}\n x & -2 & -1& 0 & 1 & 2 & 3 \\\\\n p(x) & 0.1 & k & 0.2 & 2k & 0.3 & 3k\n\\end{matrix}" (i)
"\\sum_ip(x_i)=1"
"0.1+k+0.2+2k+0.3+3k=1"
"6k=0.4"
"k=\\dfrac{1}{15}" (ii)
"\\begin{matrix}\n x & -2 & -1& 0 & 1 & 2 & 3 \\\\ \\\\\n p(x) & 0.1 & \\dfrac{1}{15} & 0.2 & \\dfrac{2}{15} & 0.3 & 0.2\n\\end{matrix}"
"P(X<2)=1-P(X=2)-P(X=3)"
"=1-0.3-0.2=0.5"
"P(-2<X<2)=P(X=-1)+P(X=0)+P(X=1)"
"=\\dfrac{1}{15}+0.2+\\dfrac{2}{15}=0.4"
(iii)
"F(x) = \\begin{cases}\n 0, &\\text{for } x<-2 \\\\\n 0.1, &\\text{for } -2\\leq x<-1 \\\\\n 1\/6, &\\text{for } -1\\leq x<0\\\\\n 11\/30, &\\text{for } 0\\leq x<1\\\\\n 0.5, &\\text{for } 1\\leq x<2 \\\\\n 0.8, &\\text{for } 2\\leq x<3 \\\\\n 1, &\\text{for } x\\geq3\n\\end{cases}" (iv)
"E(X)=-2(0.1)+(-1)(\\dfrac{1}{15})+0(0.2)+1(\\dfrac{2}{15})"
"+2(0.3)+3(0.2)=\\dfrac{16}{15}" "E(X)=\\dfrac{16}{15}"
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS !
Comments
Leave a comment