1) μ=116, σ=16\mu=116,\ \sigma=16μ=116, σ=16
P(80<X<90)=P(80−μσ<Z<90−μσ)=P(80−11616<Z<90−11616)=P(80<X<90)=P(\frac{80-\mu}{\sigma}<Z<\frac{90-\mu}{\sigma})=P(\frac{80-116}{16}<Z<\frac{90-116}{16})=P(80<X<90)=P(σ80−μ<Z<σ90−μ)=P(1680−116<Z<1690−116)=
=P(−2.25<Z<−1.625)=P(Z<−1.625)−P(Z<−2.25)==P(-2.25<Z<-1.625)=P(Z<-1.625)-P(Z<-2.25)==P(−2.25<Z<−1.625)=P(Z<−1.625)−P(Z<−2.25)=
=0.0526−0.0122=0.0404=4.04%=0.0526-0.0122=0.0404=4.04\%=0.0526−0.0122=0.0404=4.04%
2) μ=120, σ=20\mu=120,\ \sigma=20μ=120, σ=20
P(X<x)=90%=0.9 ⟹ P(Z<x−μσ)=P(Z<x−12020)=0.9P(X<x)=90\%=0.9 \implies P(Z<\frac{x-\mu}{\sigma})=P(Z<\frac{x-120}{20})=0.9P(X<x)=90%=0.9⟹P(Z<σx−μ)=P(Z<20x−120)=0.9
x−12020=1.28 ⟹ x=146\frac{x-120}{20}=1.28\implies x=14620x−120=1.28⟹x=146
Answer:
4.04%
146
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments