Question #148468
A sample of N=9 scores has a mean of M=20. One of the scores is changed and the new mean is found to be 22. If the score was originally X=7, what is its new value.
1
Expert's answer
2020-12-04T12:15:12-0500

We have

n = 9

μold=20\mu_{old}=20

μnew=22\mu_{new}=22

Lets denote the changing score xold=7x_{old}=7 , so we need to find xnewx_{new}


μ=1ni=19xi\mu=\frac{1}{n}\sum\limits_{i=1}^9 x_i

μold=1n(i=18xi+xold)\mu_{old}=\frac{1}{n}(\sum\limits_{i=1}^8 x_i + x_{old})

μnew=1n(i=18xi+xnew)\mu_{new}=\frac{1}{n}(\sum\limits_{i=1}^8 x_i + x_{new})

Thus we have

{20=19(i=18+7)22=19(i=18+xnew)    {i=18+7=180i=18+xnew=198    xnew=25\begin{cases} 20=\frac{1}{9}(\sum\limits_{i=1}^8+7) \\ 22=\frac{1}{9}(\sum\limits_{i=1}^8+x_{new}) \end{cases} \implies \begin{cases} \sum\limits_{i=1}^8+7=180 \\ \sum\limits_{i=1}^8+ x_{new}=198 \end{cases}\implies x_{new}=25 ​


Answer: 25.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS