n = 150
"\\bar x=6"
"\\sigma =0.8"
a) the 95% confidence interval for population mean is given by:
"\\bar x \\pm Z_{\\frac{0.05}{2}}\\frac{\\sigma}{\\sqrt n} =\\bar x \\pm Z_{0.025}\\frac{\\sigma}{\\sqrt n}=6\\pm1.96\\cdot\\frac{0.8}{\\sqrt{150}}=6\\pm0.128"
So the 95% confidence interval estimate for the population mean weight of apples is (5.872, 6.128) kg
b) the 98% confidence interval estimate for the population mean weight of apples is (5.8835, 6.1165) kg. Thus:
"(5.8835, 6.1165)=(\\bar x-MOE, \\bar x+MOE)"
"\\bar x-MOE=5.8835,\\ \\bar x+MOE=6.1165\\implies MOE=0.1165"
We need to find such n so margin of error is 0.1165
"Z_{\\frac{0.02}{2}}\\frac{\\sigma}{\\sqrt n}=0.1165"
"Z_{0.01}\\frac{\\sigma}{\\sqrt n}=0.1165"
"2.33\\cdot\\frac{0.8}{\\sqrt n}=0.1165 \\implies n=256"
Answer:
a) (5.872, 6.128)
b) 256
Comments
Leave a comment