a. Let "X=" the number of sales: "X\\sim Bin(n, p)"
Given "n=5, p=0.3"
"P(X=1)=\\dbinom{5}{1}0.3^1(1-0.3)^{5-1}=0.36015"
"P(X=2)=\\dbinom{5}{2}0.3^2(1-0.3)^{5-2}=0.3087"
"P(X=3)=\\dbinom{5}{3}0.3^3(1-0.3)^{5-3}=0.1323"
"P(X=4)=\\dbinom{5}{4}0.3^4(1-0.3)^{5-4}=0.02835"
"P(X=5)=\\dbinom{5}{5}0.3^5(1-0.3)^{5-5}=0.00243"
"\\begin{matrix}\n x & p(x) \\\\\n 0 & 0.16807 \\\\\n 1 & 0.36015\\\\\n 2 & 0.3087\\\\\n 3 & 0.1323\\\\\n 4 & 0.02835 \\\\\n 5 & 0.00243\n\\end{matrix}"
"P(X\\geq6)=0"
2.
"mean=E(X)=np=5(0.3)=1.5"
3.
"P(X\\leq2)=P(X=0)+P(X=1)+P(X=2)="
4.
"=P(X=3)+P(X=4)+P(X=4)+0="
"=0.16308=P(X\\geq3)"
Comments
Leave a comment