a. Let X= the number of sales: X∼Bin(n,p)
P(X=x)=(xn)px(1−p)n−x Given n=5,p=0.3
P(X=0)=(05)0.30(1−0.3)5−0=0.16807
P(X=1)=(15)0.31(1−0.3)5−1=0.36015
P(X=2)=(25)0.32(1−0.3)5−2=0.3087
P(X=3)=(35)0.33(1−0.3)5−3=0.1323
P(X=4)=(45)0.34(1−0.3)5−4=0.02835
P(X=5)=(55)0.35(1−0.3)5−5=0.00243
x012345p(x)0.168070.360150.30870.13230.028350.00243 P(X≥6)=0
2.
mean=E(X)=np=5(0.3)=1.5
Var(X)=np(1−p)=5(0.3)(1−0.3)=1.05
3.
P(X≤2)=P(X=0)+P(X=1)+P(X=2)=
=0.16807+0.36015+0.3087=0.83692 4.
P(3≤X≤6)=
=P(X=3)+P(X=4)+P(X=4)+0=
=0.16308=P(X≥3)
Comments