Mean is the average of data set.
in this case:
mean=(18+11+12+a+16+11+19+14+b+14)/number of elements in a set= (114+a+b)/10
we know that mean=14.7, so
Multiplying both sides by 10:
The variance ( σ2) is a measure of how far each value in the data set is from the mean. Here is how it is defined:
In this case:
"\u03c3^2=((18-14.7)^2+(11-14.7)^2+(12-14.7)^2+(a-14.7)^2+(16-14.7)^2+(11-14.7)^2+(19-14.7)^2+(14-14.7)^2+(b-14.7)^2+(13-14.7)^2)\/10=10.01"
"variance( \u03c32)= 10.89+13.69+7.29+(a-14.7)^2+1.69+13.69+18.49+0.49+(b-14.7)^2+2.89=10*10.01=100.1\\implies"
"(a-14.7)^2+(b-14.7)^2=100.1-69.12=30.98"
"(a^2-2*14.7*a+14.7^2)+(b^2-2*14.7*b+14.7^2)=30.98"
Substituting "a+b=33\\implies a=33-b" ,
"(33-b)^2-2*14.7*(33-b)+14.7^2+b^2-2*14.7*b+14.7^2=30.98"
"1089-2*33*b+b^2-2\u221714.7\u2217(33\u2212b)+14.7^2\n +b^2\n \u22122\u221714.7\u2217b+14.7^2\n =30.98"
"2*b^2-66b+550.98=30.98"
"b^2-33b+260=0"
"b^2-13b-20b+260=b(b-13)-20(b-13)=(b-13)(b-20)=0\\implies\nb_1=13; b_2=20;"
substituting these values into "a+b=33, a_1=33-13=20 ; a_2=33-20=13;"
which means a and b take values 13 and 20.
Comments
Leave a comment