Question #143283
Let X=level of income and Y=political preference. Use the results shown in the table below abd test on a1% level of significance whether the political preference and the level of income are independent
Political party: Level of income A - 23, 40, 16, 2
B - 11, 75, 107, 14
C - 1, 31, 60, 10
Suppose that the test statistic calculated is 69, 3875, which statement is incorrect?
1. H0 The variable are independent
H1 The variables are dependent
2. The degrees of freedom df = 12
3. The critical value =16, 812
4. There are 390 people
5 H0 is rejected The two variable are dependent
1
Expert's answer
2020-11-11T20:16:49-0500
Y1Y2Y3Y4TotalA234016281B117510714207C1316010102Total3514618326390\def\arraystretch{1.5} \begin{array}{c:c:c:c:c:c} & Y_1 & Y_2 & Y_3 & Y_4 & Total \\ \hline A & 23 & 40 & 16 & 2 & 81 \\ B & 11 & 75 & 107 & 14 &207 \\ C & 1 & 31 & 60 & 10 & 102 \\ \hdashline Total & 35 & 146 & 183 & 26 & 390 \end{array}

 The following null and alternative hypotheses need to be tested:

H0:H_0: The two variables are independent

Ha:H_a: The two variables are dependent


This corresponds to a Chi-Square test of independence.


Based on the information provided, the significance level is α=0.01,\alpha=0.01, the number of degrees of freedom is df=(31)×(41)=6,df=(3-1)\times(4-1)=6, so then the rejection region for this test is R={χ2:χ2>16.8119}R=\{\chi^2:\chi^2>16.8119\} 


35(81)390=7.2692\dfrac{35(81)}{390}=7.2692

146(81)390=30.3231\dfrac{146(81)}{390}=30.3231

183(81)390=38.0077\dfrac{183(81)}{390}=38.0077

26(81)390=5.4\dfrac{26(81)}{390}=5.4

35(207)390=18.5769\dfrac{35(207)}{390}=18.5769

146(207)390=77.4923\dfrac{146(207)}{390}=77.4923

183(207)390=97.1308\dfrac{183(207)}{390}=97.1308

26(207)390=13.8\dfrac{26(207)}{390}=13.8

35(102)390=9.1538\dfrac{35(102)}{390}=9.1538

146(102)390=38.1846\dfrac{146(102)}{390}=38.1846

183(102)390=47.8615\dfrac{183(102)}{390}=47.8615

26(102)390=6.8\dfrac{26(102)}{390}=6.8EijY1Y2Y3Y4TotalA7.269230.323138.00775.481B18.576977.492397.130813.8207C9.153838.184647.86156.8102Total3514618326390\def\arraystretch{1.5} \begin{array}{c:c:c:c:c:c} E_{ij} & Y_1 & Y_2 & Y_3 & Y_4 & Total \\ \hline A & 7.2692 & 30.3231 & 38.0077 & 5.4 & 81 \\ B & 18.5769 & 77.4923 & 97.1308 & 13.8 &207 \\ C & 9.1538 & 38.1846 & 47.8615 & 6.8 & 102 \\ \hdashline Total & 35 & 146 & 183 & 26 & 390 \end{array}

Based on the observed and expected values, the squared distances can be computed according to the following formula: (EO)2/E(E-O)^2/E

(237.2692)27.2692=34.0416\dfrac{(23-7.2692)^2}{7.2692}=34.0416

(4030.3231)230.3231=3.0882\dfrac{(40-30.3231)^2}{30.3231}=3.0882

(1638.0077)238.0077=12.7432\dfrac{(16-38.0077)^2}{38.0077}=12.7432

(25.4)25.4=2.1407\dfrac{(2-5.4)^2}{5.4}=2.1407


(1118.5769)218.5769=3.0904\dfrac{(11-18.5769)^2}{18.5769}=3.0904


(7577.4923)277.4923=0.0802\dfrac{(75-77.4923)^2}{77.4923}=0.0802

(10797.1308)297.1308=1.0028\dfrac{(107-97.1308)^2}{97.1308}=1.0028

(1413.8)213.8=0.0029\dfrac{(14-13.8)^2}{13.8}=0.0029

(19.1538)29.1538=7.2630\dfrac{(1-9.1538)^2}{9.1538}=7.2630

(3138.1846)238.1846=1.3518\dfrac{(31-38.1846)^2}{38.1846}=1.3518

(6047.8615)247.8615=3.0785\dfrac{(60-47.8615)^2}{47.8615}=3.0785

(106.8)26.8=1.5059\dfrac{(10-6.8)^2}{6.8}=1.5059


Squared distancesY1Y2Y3Y4A34.04163.088212.74322.1407B3.09040.08021.00280.0029C7.26301.35183.07851.5059\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} Squared\ distances& Y_1 & Y_2 & Y_3 & Y_4 \\ \hline A & 34.0416 & 3.0882 & 12.7432 & 2.1407 \\ B & 3.0904 & 0.0802 & 1.0028 & 0.0029 \\ C & 7.2630 & 1.3518 & 3.0785 & 1.5059 \\ \end{array}

The Chi-Squared statistic is computed as follows:


χ2=i,j(OijEij)2Eij=\chi^2=\sum_{i, j}\dfrac{(O_{ij}-E_{ij})^2}{E_{ij}}=

=34.046+3.0882+12.7432+2.1407+=34.046+3.0882+12.7432+2.1407+

+3.0904+0.0802+1.0028+0.0029++3.0904+0.0802+1.0028+0.0029+

+7.2630+1.3518+3.0785+1.5059=+7.2630+1.3518+3.0785+1.5059=

=69.3936=69.3936

Since it is observed that χ2=69.3936>16.8119=χc2,\chi^2=69.3936>16.8119=\chi^2_c, it is then concluded that the null hypothesis is rejected.

Therefore, there is enough evidence to claim that the two variables are dependent, at the 0.01 significance level.

The corresponding p-value for the test is p=P(χ2>69.3936)<0.0001.p=P(\chi^2>69.3936)<0.0001. 


The statement

2. The degrees of freedom df = 12

is incorrect.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS