"\\displaystyle\n\n(a)\n\\\\\n\\textsf{Number of outcomes of rolling}\\\\\\textsf{a fair die} \\, = 6\\\\\n\n\n\\textsf{Number of outcomes of tossing}\\\\\\textsf{a coin} \\, = 2\\\\\n\n\\textsf{By the multiplication principle,}\\\\\n\\textsf{the total number of outcomes}\\\\\n\\textsf{of rolling a die and tossing}\\\\\\textsf{a coin}\\, = 6 \\times 2 = 12\\\\\n\n\n(b) \\\\\n\n\\textsf{Let}\\, H\\, \\textsf{be the event}\\\\\n\\textsf{that a Head was observed and}\\\\\nT \\, \\textsf{be the event that a Tail}\\\\\n\\textsf{was observed.}\\\\\n\n\\textsf{The outcomes of rolling a fair}\\\\\n\\textsf{die is}\\, 1, 2, 3, 4, 5, 6.\\\\\n\n\n\\textsf{Thus the total number of possible}\\\\ \\textsf{outcomes are}\\\\\n\n\n(H, 1), \\, (H, 2), \\, (H, 3), \\, (H, 4), \\\\ (H, 5), \\, (H, 6), \\, (T, 1), \\, (T, 2), \\\\ (T, 3), \\, (T, 4), \\, (T, 5), \\, (T, 6).\\\\\n\n\n(c)i.\\\\\n \\textsf{The probability that the coin lands}\\\\\n\\textsf{a tail is}\\, Pr(T) = \\frac{1}{2}\\\\\n\n\nii.\\\\\n\\textsf{The Probability that die rolled}\\\\\n\\textsf{a}\\, 2 \\, \\textsf{is}.\\\\\n\nPr(2) = \\frac{1}{6}\\\\\n\niii. \\\\\n\\textsf{The probability that a two}\\\\\n\\textsf{is rolled or the coin}\\\\\\textsf{lands a tail is}\\\\\n\nPr(T \\,\\textsf{or}\\, 2) = Pr(2) + Pr(T) = \\frac{1}{6} + \\frac{1}{2} = \\frac{4}{6}\\\\\n\n\\textsf{This is because the event}\\\\\n\\textsf{is a mutually exclusive event.}\\\\\n\niv. \\\\\n\\textsf{The probability that a two}\\\\\n\\textsf{is rolled and the coin}\\\\\n\\textsf{lands a tail is}\\\\\n\n\nPr(T \\, \\textsf{and}\\, 2) = Pr(2) \\times Pr(T) = \\frac{1}{6} \\times \\frac{1}{2} = \\frac{1}{12} \\\\\n\n\\textsf{This is because the event}\\\\\n\\textsf{is an independent event.}"
Comments
Leave a comment