We need to compute P(40≤Xˉ≤60)P(40 \le \bar X \le 60)P(40≤Xˉ≤60). The corresponding z-values needed to be computed are:
Z1=Xˉ1−μσ=40−4515=−0.33Z_1 = \frac{\bar X_1 - \mu}{\sigma}= \frac{ 40-45}{ 15} = -0.33Z1=σXˉ1−μ=1540−45=−0.33
Z2=Xˉ2−μσ=60−4515=1Z_2 = \frac{\bar X_2- \mu}{\sigma}= \frac{ 60-45}{ 15} = 1Z2=σXˉ2−μ=1560−45=1
P(40≤Xˉ≤60)=P(−0.33≤Z≤1)=P(Z≤1)−P(Z≤−0.33)=0.84134−0.3707=0.4706P(40≤ \bar X ≤60)=P(-0.33≤Z≤1)=P(Z≤1)-P(Z≤-0.33)=0.84134-0.3707=0.4706P(40≤Xˉ≤60)=P(−0.33≤Z≤1)=P(Z≤1)−P(Z≤−0.33)=0.84134−0.3707=0.4706
Number of items N=n*P=100*0.57=470.6=471
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments