"\\begin{matrix}\n & 1 & 2 & 3 & 4 & 5 & 6 \\\\\n 1 & 1+1 & 1+2 & 1+3 & 1+4 & 1+5 & 1+6 \\\\ \n 2 & 2+1 & 2+2 & 2+3 & 2+4 & 2+5 & 2+6\\\\ \n 3 & 3+1 & 3+2 & 3+3 & 3+4 & 3+5 & 3+6 \\\\\n 4 & 4+1 & 4+2 & 4+3 & 4+4 & 4+5 & 4 +6 \\\\\n 5 & 5+1 & 5+2 & 5+3 & 5+4 & 5+5 & 5+6 \\\\\n 6 & 6+1 & 6+2 & 6+3 & 6+4 & 6+5 & 6+6\n\\end{matrix}" Total number of cases when two dice roles =6×6=36
Let us define the event A as:
a. A: On throw of the pair of fair dice, getting a total of 6
"A=\\{(1, 5), (2,4), (3,3),(4,2), (5,1)\\}"
"P(a\\ total\\ of \\ 6)=P(A)=\\dfrac{5}{36}"b. Let us define the event B as:
B: On throw of the pair of fair dice, getting at most a total of 6
"B=\\{(1,1), (1,2),(1,3), (1,4),(1, 5),""(2,1), (2,2), (2,3), (2,4),""(3,1),(3,2), (3,3),""(4,1),(4,2),""(5,1)\\}""P(at\\ most\\ a\\ total\\ of \\ 6)=P(B)=\\dfrac{15}{36}=\\dfrac{5}{12}"
Comments
Leave a comment