Question #139078
1. A pair of fair dice is tossed. Find the probability of getting
a. A total of 6.
b. At most a total of 6.
1
Expert's answer
2020-10-19T17:45:01-0400
12345611+11+21+31+41+51+622+12+22+32+42+52+633+13+23+33+43+53+644+14+24+34+44+54+655+15+25+35+45+55+666+16+26+36+46+56+6\begin{matrix} & 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 1+1 & 1+2 & 1+3 & 1+4 & 1+5 & 1+6 \\ 2 & 2+1 & 2+2 & 2+3 & 2+4 & 2+5 & 2+6\\ 3 & 3+1 & 3+2 & 3+3 & 3+4 & 3+5 & 3+6 \\ 4 & 4+1 & 4+2 & 4+3 & 4+4 & 4+5 & 4 +6 \\ 5 & 5+1 & 5+2 & 5+3 & 5+4 & 5+5 & 5+6 \\ 6 & 6+1 & 6+2 & 6+3 & 6+4 & 6+5 & 6+6 \end{matrix}

Total number of cases when two dice roles =6×6=36

Let us define the event A as:

a. A: On throw of the pair of fair dice, getting a total of 6


A={(1,5),(2,4),(3,3),(4,2),(5,1)}A=\{(1, 5), (2,4), (3,3),(4,2), (5,1)\}

P(a total of 6)=P(A)=536P(a\ total\ of \ 6)=P(A)=\dfrac{5}{36}

b. Let us define the event B as:

B: On throw of the pair of fair dice, getting at most a total of 6


B={(1,1),(1,2),(1,3),(1,4),(1,5),B=\{(1,1), (1,2),(1,3), (1,4),(1, 5),(2,1),(2,2),(2,3),(2,4),(2,1), (2,2), (2,3), (2,4),(3,1),(3,2),(3,3),(3,1),(3,2), (3,3),(4,1),(4,2),(4,1),(4,2),(5,1)}(5,1)\}P(at most a total of 6)=P(B)=1536=512P(at\ most\ a\ total\ of \ 6)=P(B)=\dfrac{15}{36}=\dfrac{5}{12}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS