Question #137852
1.Let X be a random variable such that
P(X= -2)= P(X= -1), P(X= 2)= P(X= 1) and
P(X> 0)=P(X< 0)= P(X= 0).
Obtain the probability mass function of X and its distribution function.
2.A.random variable X assumes the values -3, -2, -1,0, 1,~, 3 such that
P(X= -3)= P(x= -2)= P(X= -1),
P(X= 1)= P(X= 2)= P(X= 3),
and P ( X= 0) = P ( X > 0) = P ( X < 0),
Obtain the probability mass function of X and 'its distribution function, and find
further the probability mass function of Y = 2X^2 + 3X + 4.
1
Expert's answer
2020-10-12T19:06:06-0400
  1. We supppose that XX takes values m,m+1,,1,0,1,,n1,n-m,-m+1,\ldots,-1,0,1,\ldots,n-1,n with probabilities pm,pm+1,..,p1,p0,p1,p2,,pn1,pnp_{-m},p_{-m+1},..,p_{-1},p_0,p_1,p_2,\ldots,p_{n-1},p_n . It has to be satisfied: i=mnpi=1\sum_{i=-m}^{n}p_i=1 . From the conditions we receive that i=m1pi=p0=i=1npi\sum_{i=-m}^{-1}p_i=p_0=\sum_{i=1}^{n}p_i and p2=p1,p1=p2p_{-2}=p_{-1}, p_1=p_2. The distribution function is then given by FX(x)=P(Xx)=i=mxpiF_X(x)=P(X\leq x)=\sum_{i=-m}^xp_i.
  2. We denote p1=P(X=3)=P(X=2)=P(X=1),p_1=P(X=-3)=P(X=-2)=P(X=-1), p2=P(X=1)=P(X=2)=P(X=3),p_2=P(X=1)=P(X=2)=P(X=3), p3=P(X=0)=3p1=3p2p_3=P(X=0)=3p_1=3p_2 . From the latter we find that p1=p2p_1=p_2 . From Equality 3p1+3p2+p3=6p1+3p1=13p_1+3p_2+p_3=6p_1+3p_1=1 yields p1=19p_1=\frac19 . Thus,

P(X=3)=P(X=2)=P(X=1)=19,P(X=-3)=P(X=-2)=P(X=-1)=\frac19,

P(X=1)=P(X=2)=P(X=3)=19,P(X=1)=P(X=2)=P(X=3)=\frac19, p3=13p_3=\frac13

The distribution function is then given by FX(x)=P(Xx)=i=mxpiF_X(x)=P(X\leq x)=\sum_{i=-m}^xp_i . The function YY takes values 13, 6, 0, 4, 9, 18, 31. The probability mass function can be taken from the probabilities:

P(X=13)=P(X=6)=P(X=0)=19,P(X=13)=P(X=6)=P(X=0)=\frac19, P(X=4)=13P(X=4)=\frac13 ,

P(X=9)=P(X=18)=P(X=31)=19.P(X=9)=P(X=18)=P(X=31)=\frac19.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS