- We supppose that X takes values −m,−m+1,…,−1,0,1,…,n−1,n with probabilities p−m,p−m+1,..,p−1,p0,p1,p2,…,pn−1,pn . It has to be satisfied: ∑i=−mnpi=1 . From the conditions we receive that ∑i=−m−1pi=p0=∑i=1npi and p−2=p−1,p1=p2. The distribution function is then given by FX(x)=P(X≤x)=∑i=−mxpi.
- We denote p1=P(X=−3)=P(X=−2)=P(X=−1), p2=P(X=1)=P(X=2)=P(X=3), p3=P(X=0)=3p1=3p2 . From the latter we find that p1=p2 . From Equality 3p1+3p2+p3=6p1+3p1=1 yields p1=91 . Thus,
P(X=−3)=P(X=−2)=P(X=−1)=91,
P(X=1)=P(X=2)=P(X=3)=91, p3=31
The distribution function is then given by FX(x)=P(X≤x)=∑i=−mxpi . The function Y takes values 13, 6, 0, 4, 9, 18, 31. The probability mass function can be taken from the probabilities:
P(X=13)=P(X=6)=P(X=0)=91, P(X=4)=31 ,
P(X=9)=P(X=18)=P(X=31)=91.
Comments