Unpaired t-test for equality of means, unequal variances.
"H_0:\\mu_1\\le\\mu_2"
"H_1:\\mu_1>\\mu_2"
"t = \\frac{\\overline{x}_{1} - \\overline{x}_{2}}{\\sqrt{\\frac{s_{1}^{2}}{n_{1}} + \\frac{s_{2}^{2}}{n_{2}}}}"
"t = \\frac{68.2 - 67.5}{\\sqrt{\\frac{2.5^{2}}{50} + \\frac{2.8^{2}}{50}}}=1.3186"
One tailed test. Cv="t_{{\\alpha}df}"
Let"\\alpha=0.05"
"df = \\frac{ \\left ( \\frac{s_{1}^2}{n_{1}} + \\frac{s_{2}^2}{n_{2}} \\right ) ^{2} }{ \\frac{1}{n_{1}-1} \\left ( \\frac{s_{1}^2}{n_{1}} \\right ) ^{2} + \\frac{1}{n_{2}-1} \\left ( \\frac{s_{2}^2}{n_{2}} \\right ) ^{2}}"
"df = \\frac{ \\left ( \\frac{2.5^2}{50} + \\frac{2.8^2}{50} \\right ) ^{2} }{ \\frac{1}{50-1} \\left ( \\frac{2.5^2}{50} \\right ) ^{2} + \\frac{1}{50-1} \\left ( \\frac{2.8^2}{50} \\right ) ^{2}}"
"Df=96.8=97"
"Cv=t_{0.05,97}=1.661"
Since the test statistic value 1.3186 is less than the critical value 1.661, we fail to reject the null hypothesis and conclude that there is no sufficient evidence to support the claim that make students who participated in the college athletics are taller than the other male students.
Comments
Leave a comment