Question #137242
8.A survey of 800 families with 4 children each revealed the following distribution:No. of boys:01234No. of girls:43210No. of families:3217829023664Is this result consistent with the hypothesis that the male & female births are equallyprobable?
1
Expert's answer
2020-10-07T18:55:14-0400

No.of boys01234No.of girls43210No.of families3217829023664\begin{matrix} No.of\ boys & 0 & 1 & 2 & 3 & 4 \\ No.of\ girls & 4 & 3 & 2 & 1 & 0 \\ No.of\ families & 32 & 178 & 290 & 236 & 64 \end{matrix}


P(all boys)=(12)4=116P(all\ boys)=(\dfrac{1}{2})^4=\dfrac{1}{16}

P(3 boys & 1 girl)=(43)(12)3(12)=14P(3\ boys\ \& \ 1\ girl)=\dbinom{4}{3}(\dfrac{1}{2})^3(\dfrac{1}{2})=\dfrac{1}{4}

P(2 boys & 2 girl)=(42)(12)2(12)2=38P(2\ boys\ \& \ 2\ girl)=\dbinom{4}{2}(\dfrac{1}{2})^2(\dfrac{1}{2})^2=\dfrac{3}{8}

P(1 boy & 3 girls)=(41)(12)(12)3=14P(1\ boy\ \& \ 3\ girls)=\dbinom{4}{1}(\dfrac{1}{2})(\dfrac{1}{2})^3=\dfrac{1}{4}

P(all girls)=(12)4=116P(all\ girls)=(\dfrac{1}{2})^4=\dfrac{1}{16}


For 800 families

No.of families(all boys)=116×800=50No.of\ families(all\ boys)=\dfrac{1}{16}\times800=50

No.of families(3 boys & 1 girl)=14×800=200No.of\ families(3\ boys\ \& \ 1\ girl)=\dfrac{1}{4}\times800=200

No.of families(2 boys & 2 girl)=38×800=300No.of\ families(2\ boys\ \& \ 2\ girl)=\dfrac{3}{8}\times800=300

No.of families(1 boy & 3 girls)=14×800=200No.of\ families(1\ boy\ \& \ 3\ girls)=\dfrac{1}{4}\times800=200

No.of families(all girls)=116×800=50No.of\ families(all\ girls)=\dfrac{1}{16}\times800=50


H0:H_0: the male & female births are equally probable.

Based on the information provided, the significance level is α=0.05,\alpha=0.05, the number of degrees of freedom is df=51=4,df=5-1=4, so then the rejection region for this test is R={χ2:χ2>9.488}.R=\{\chi^2:\chi^2>9.488\}.


The Chi-Squared statistic is computed as follows:


x2=(fofe)2fe=x^2=\sum\dfrac{(f_o-f_e)^2}{f_e}=

=(3250)250+(178200)2200+(290300)2300+=\dfrac{(32-50)^2}{50}+\dfrac{(178-200)^2}{200}+\dfrac{(290-300)^2}{300}+

+(236200)2200+(6450)250=5893019.633+\dfrac{(236-200)^2}{200}+\dfrac{(64-50)^2}{50}=\dfrac{589}{30}\approx19.633



Since it is observed that χ2=19.6333>9.488=χc2,\chi^2=19.6333>9.488=\chi_c^2, it is then concluded that the null hypothesis is rejected.

Therefore, there is enough evidence to claim that the male & female births are not equally probable,at the α=0.05\alpha=0.05 significance level.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS