Question #136812
Let X~Bin(50, 0.64). For samples of size 36, calculate P(31.28 < X bar < 33.36).
1
Expert's answer
2020-10-07T16:12:13-0400

XBin(50,0.64)X\sim Bin(50, 0.64)


μ=np=500.64=32\mu=np=50\cdot0.64=32

σ=np(1p)=50(0.64)(10.64)=2.42\sigma=\sqrt{np(1-p)}=\sqrt{50(0.64)(1-0.64)}=2.4\sqrt{2}

XˉN(32,(2.42)2)\bar{X}\sim N(32, (2.4\sqrt{2})^2)

n1=36n_1=36


P(31.28<Xˉ<33.36)=P(Xˉ<33.36)P(Xˉ<31.28)=P(31.28<\bar{X}<33.36)=P(\bar{X}<33.36)-P(\bar{X}<31.28)=

=P(Z<33.3632(2.42)/36)P(Z<31.2832(2.42)/36)=P(Z<\dfrac{33.36-32}{(2.4\sqrt{2})/\sqrt{36}})-P(Z<\dfrac{31.28-32}{(2.4\sqrt{2})/\sqrt{36}})\approx

P(Z<2.404163)P(Z<1.272792)\approx P(Z<2.404163)-P(Z<-1.272792)\approx

0.9918950.101546=0.890349\approx0.991895-0.101546=0.890349



P(31.28<Xˉ<33.36)=0.890349P(31.28<\bar{X}<33.36)=0.890349



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS