f(x)=3.3e−x/3.3,x>0 E(X)=∫−∞∞xf(x)dx=∫0∞x3.3e−x/3.3dx
∫x3.3e−x/3.3dx=−xe−x/3.3+∫e−x/3.3dx=
=−xe−x/3.3−3.3e−x/3.3+C
E(X)=A→∞lim[−xe−x/3.3−3.3e−x/3.3]A0=3.3
E(X2)=∫−∞∞x2f(x)dx=∫0∞x23.3e−x/3.3dx
∫x23.3e−x/3.3dx=−x2e−x/3.3+2∫xe−x/3.3dx=
=−x2e−x/3.3−6.6xe−x/3.3−21.78e−x/3.3+C
E(X2)=A→∞lim[−x2e−x/3.3−6.6xe−x/3.3−21.78e−x/3.3]A0==21.78
V(X)=E(X2)−(E(X))2=21.78−(3.3)2=10.89
b.
f(x)=βe−x/β,x>0 E(X)=∫−∞∞xf(x)dx=∫0∞xβe−x/βdx
∫xβe−x/βdx=−xe−x/β+∫e−x/βdx==−xe−x/β−βe−x/β+C
E(X)=A→∞lim[−xe−x/β−βe−x/β]A0=β
E(X2)=∫−∞∞x2f(x)dx=∫0∞x2βe−x/βdx
∫x2βe−x/βdx=−x2e−x/β+2∫xe−x/βdx=
=−x2e−x/β−2βxe−x/β−2β2e−x/β+C
E(X2)=A→∞lim[−x2e−x/β−2βxe−x/β−2β2e−x/β]A0==2β2
V(X)=E(X2)−(E(X))2=2β2−(β)2=β2
E(X)=β
V(X)=β2
Comments