Question #136740
. Suppose that the time in days until hospital discharge for a certain patient population follows a density f(x) = (1/3.3)exp(−x/3.3) for x > 0.
a. Find the mean and variance of this distribution.
b. The general form of this density (the exponential density) is f(x) =(1/β)exp(−x/β) for x > 0 for a fixed value of β. Calculate the mean and variance of this density.
1
Expert's answer
2020-10-06T18:35:45-0400
f(x)=ex/3.33.3,x>0f(x)=\dfrac{e^{-x/3.3}}{3.3}, x>0

E(X)=xf(x)dx=0xex/3.33.3dxE(X)=\displaystyle\int_{-\infin}^\infin xf(x)dx=\displaystyle\int_{0}^\infin x\dfrac{e^{-x/3.3}}{3.3}dx



xex/3.33.3dx=xex/3.3+ex/3.3dx=\int x\dfrac{e^{-x/3.3}}{3.3}dx=-xe^{-x/3.3}+\int e^{-x/3.3}dx=


=xex/3.33.3ex/3.3+C=-xe^{-x/3.3}-3.3e^{-x/3.3}+C

E(X)=limA[xex/3.33.3ex/3.3]A0=3.3E(X)=\lim\limits_{A\to \infin}\big[-xe^{-x/3.3}-3.3e^{-x/3.3}\big]\begin{matrix} A \\ 0 \end{matrix}=3.3

E(X2)=x2f(x)dx=0x2ex/3.33.3dxE(X^2)=\displaystyle\int_{-\infin}^\infin x^2f(x)dx=\displaystyle\int_{0}^\infin x^2\dfrac{e^{-x/3.3}}{3.3}dx


x2ex/3.33.3dx=x2ex/3.3+2xex/3.3dx=\int x^2\dfrac{e^{-x/3.3}}{3.3}dx=-x^2e^{-x/3.3}+2\int xe^{-x/3.3}dx=

=x2ex/3.36.6xex/3.321.78ex/3.3+C=-x^2e^{-x/3.3}-6.6xe^{-x/3.3}-21.78e^{-x/3.3}+C

E(X2)=limA[x2ex/3.36.6xex/3.321.78ex/3.3]A0=E(X^2)=\lim\limits_{A\to \infin}\big[-x^2e^{-x/3.3}-6.6xe^{-x/3.3}-21.78e^{-x/3.3}\big]\begin{matrix} A \\ 0 \end{matrix}==21.78=21.78



V(X)=E(X2)(E(X))2=21.78(3.3)2=10.89V(X)=E(X^2)-(E(X))^2=21.78-(3.3)^2=10.89


b.

f(x)=ex/ββ,x>0f(x)=\dfrac{e^{-x/\beta}}{\beta}, x>0

E(X)=xf(x)dx=0xex/ββdxE(X)=\displaystyle\int_{-\infin}^\infin xf(x)dx=\displaystyle\int_{0}^\infin x\dfrac{e^{-x/\beta}}{\beta}dx



xex/ββdx=xex/β+ex/βdx=\int x\dfrac{e^{-x/\beta}}{\beta}dx=-xe^{-x/\beta}+\int e^{-x/\beta}dx==xex/ββex/β+C=-xe^{-x/\beta}-\beta e^{-x/\beta}+C

E(X)=limA[xex/ββex/β]A0=βE(X)=\lim\limits_{A\to \infin}\big[-xe^{-x/\beta}-\beta e^{-x/\beta}\big]\begin{matrix} A \\ 0 \end{matrix}=\beta

E(X2)=x2f(x)dx=0x2ex/ββdxE(X^2)=\displaystyle\int_{-\infin}^\infin x^2f(x)dx=\displaystyle\int_{0}^\infin x^2\dfrac{e^{-x/\beta}}{\beta}dx




x2ex/ββdx=x2ex/β+2xex/βdx=\int x^2\dfrac{e^{-x/\beta}}{\beta}dx=-x^2e^{-x/\beta}+2\int xe^{-x/\beta}dx=

=x2ex/β2βxex/β2β2ex/β+C=-x^2e^{-x/\beta}-2\beta xe^{-x/\beta}-2\beta ^2e^{-x/\beta}+C

E(X2)=limA[x2ex/β2βxex/β2β2ex/β]A0=E(X^2)=\lim\limits_{A\to \infin}\big[-x^2e^{-x/\beta}-2\beta xe^{-x/\beta}-2\beta^2e^{-x/\beta}\big]\begin{matrix} A \\ 0 \end{matrix}==2β2=2\beta^2



V(X)=E(X2)(E(X))2=2β2(β)2=β2V(X)=E(X^2)-(E(X))^2=2\beta^2-(\beta)^2=\beta^2


E(X)=βE(X)=\beta

V(X)=β2V(X)=\beta^2



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS