"E(X)=\\displaystyle\\int_{-\\infin}^\\infin xf(x)dx=\\displaystyle\\int_{0}^\\infin x\\dfrac{e^{-x\/3.3}}{3.3}dx"
"E(X)=\\lim\\limits_{A\\to \\infin}\\big[-xe^{-x\/3.3}-3.3e^{-x\/3.3}\\big]\\begin{matrix}\n A \\\\\n 0\n\\end{matrix}=3.3"
"E(X^2)=\\displaystyle\\int_{-\\infin}^\\infin x^2f(x)dx=\\displaystyle\\int_{0}^\\infin x^2\\dfrac{e^{-x\/3.3}}{3.3}dx"
"=-x^2e^{-x\/3.3}-6.6xe^{-x\/3.3}-21.78e^{-x\/3.3}+C"
"E(X^2)=\\lim\\limits_{A\\to \\infin}\\big[-x^2e^{-x\/3.3}-6.6xe^{-x\/3.3}-21.78e^{-x\/3.3}\\big]\\begin{matrix}\n A \\\\\n 0\n\\end{matrix}=""=21.78"
"V(X)=E(X^2)-(E(X))^2=21.78-(3.3)^2=10.89"
b.
"f(x)=\\dfrac{e^{-x\/\\beta}}{\\beta}, x>0""E(X)=\\displaystyle\\int_{-\\infin}^\\infin xf(x)dx=\\displaystyle\\int_{0}^\\infin x\\dfrac{e^{-x\/\\beta}}{\\beta}dx"
"E(X)=\\lim\\limits_{A\\to \\infin}\\big[-xe^{-x\/\\beta}-\\beta e^{-x\/\\beta}\\big]\\begin{matrix}\n A \\\\\n 0\n\\end{matrix}=\\beta"
"E(X^2)=\\displaystyle\\int_{-\\infin}^\\infin x^2f(x)dx=\\displaystyle\\int_{0}^\\infin x^2\\dfrac{e^{-x\/\\beta}}{\\beta}dx"
"=-x^2e^{-x\/\\beta}-2\\beta xe^{-x\/\\beta}-2\\beta ^2e^{-x\/\\beta}+C"
"E(X^2)=\\lim\\limits_{A\\to \\infin}\\big[-x^2e^{-x\/\\beta}-2\\beta xe^{-x\/\\beta}-2\\beta^2e^{-x\/\\beta}\\big]\\begin{matrix}\n A \\\\\n 0\n\\end{matrix}=""=2\\beta^2"
"V(X)=E(X^2)-(E(X))^2=2\\beta^2-(\\beta)^2=\\beta^2"
"E(X)=\\beta"
"V(X)=\\beta^2"
Comments
Leave a comment