"\\lambda" =(305*0+363*1+211*2+81*3+28*4+9*5+2*6+1*7)/(305+363+211+81+28+9+2+1)=1204/1000=1.2
SIGNIFICANCE LEVEL = 0.05
to find expected values for Poisson distribution we should use formula:
P(x=k)="(e^{-\\lambda}*\\lambda^k)\/k!"
P(x=0)=0.302
E(x=0)=1000*0.302=302
P(x=1)=0.362
E(x=1)=1000*0.362=362
P(x=2)=0.216
E(x=2)=1000*0.216=216
P(x=3)=0.086
E(x=3)=1000*0.86=86
P(x=4)=0.026
E(x=4)=1000*0.026=26
P(x=5)=0.006
E(x=5)=1000*0.006=6
P(x=6)=0.001
E(x=6)=1000*0.001=1
E(x=7)=1000-E(x=0)-E(x=1)-E(x=2)-E(x=3)-E(x=4)-E(x=5)-E(x=6)=1
"\\chi^2_0=\\sum^6_{i=0}((O_i-E_i)^2\/E_i)" , where Oi - observed values
using table, we prove that this is the Poisson distribution if our sample data gives a value "\\chi^2_0<\\chi^2_{7,0.04}" =14.06 ( 7 degrees of freedom )
Chi squared equals 3.093 with 7 degrees of freedom, so this is a Poisson distribution
Comments
Leave a comment