This statement is true because a variance (and a standard deviation) cannot be negative.
Let we have a r. v. "\\xi". Then "D\\xi=M(\\xi-M\\xi)^2". So we consider a r. v. "(\\xi-M\\xi)^2" (which takes on only non-negative values) and find its expectation. We get "D\\xi\\geq 0".
"D\\xi=0 \\Leftrightarrow \\xi-M\\xi=0\\ (\\text{when }\\xi \\text{ is constant})."
"\\sigma_\\xi=\\sqrt{D\\xi}". So "\\sigma_\\xi\\geq 0".
Comments
Leave a comment