Let X be a normal random variable with mean m and variance σ2 such that
P(X<35)=15%=0.15 and P(X>65)=10%=0.1, then
P(X<65)=1−0.1=0.9.
Since X is a normal random variable, then
Z=σX−m is the standard normal random variable.
P(X<35)=P(σX−m<σ35−m)=P(Z<σ35−m)=0.15,
P(X<65)=P(σX−m<σ65−m)=P(Z<σ65−m)=0.9.
Using quantile function Q for the standard normal random variable,
σ35−m=Q(0.15)=−1.04,
σ65−m=Q(0.9)=1.28,
hence
35−m=−1.04σ,
65−m=1.28σ,
65−m−(35−m)=1.28σ+1.04σ,
2.32σ=30,σ=2.3230≈12.931,
65−m=1.28⋅12.931≈16.552,m=65−16.552=48.448.
Answer: 48.448.
Comments