Question #129216
In a normal distribution 15% of items are below 35 and 10% are above 65. Find the mean.
1
Expert's answer
2020-08-12T17:35:23-0400

Let XX be a normal random variable with mean mm and variance σ2\sigma^2 such that

P(X<35)=15%=0.15P(X<35)=15\%=0.15 and P(X>65)=10%=0.1P(X>65)=10\%=0.1, then

P(X<65)=10.1=0.9.P(X<65)=1-0.1=0.9.

Since XX is a normal random variable, then

Z=XmσZ=\frac{X-m}{\sigma} is the standard normal random variable.

P(X<35)=P(Xmσ<35mσ)=P(Z<35mσ)=0.15,P(X<35)=P(\frac{X-m}{\sigma}<\frac{35-m}{\sigma})=\\ P(Z<\frac{35-m}{\sigma})=0.15,

P(X<65)=P(Xmσ<65mσ)=P(Z<65mσ)=0.9.P(X<65)=P(\frac{X-m}{\sigma}<\frac{65-m}{\sigma})=\\ P(Z<\frac{65-m}{\sigma})=0.9.

Using quantile function QQ for the standard normal random variable,

35mσ=Q(0.15)=1.04\frac{35-m}{\sigma}=Q(0.15)=-1.04,

65mσ=Q(0.9)=1.28\frac{65-m}{\sigma}=Q(0.9)=1.28,

hence

35m=1.04σ35-m=-1.04\sigma,

65m=1.28σ65-m=1.28\sigma,

65m(35m)=1.28σ+1.04σ,65-m-(35-m)=1.28\sigma+1.04\sigma,

2.32σ=30,σ=302.3212.931,2.32\sigma=30, \sigma=\frac{30}{2.32}\approx12.931,

65m=1.2812.93116.552,m=6516.552=48.448.65-m=1.28\cdot12.931\approx 16.552, \\ m=65-16.552=48.448.

Answer: 48.448.48.448.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS