A random sample of eight drugstores shows the following prices (in $ of a popular pain reliever:
3.50, 4.00, 2.00, 3.00, 2.50, 3.50, 2.50, 3.00
Assume the normal distribution for the underlying population to construct the 90% confidence interval for the population mean.
"\\text{The confidence interval for the mean }\\\\\n\\text{can be calculated as follows:}\\\\\n \\bar x\u00b1t_{(\\frac{\u03b1}{2},n-1)}(\\frac{s}{\\sqrt{n}}),\\\\\n \\bar x=\\frac{3.5+4+...+3}{8}=3\\\\\n t_{(\\frac{\u03b1}{2},n-1)}=t_{(0.05,7)}=1.895,\\\\\n s^2=\\frac{(3.5-3)^2+(4-3)^2+...+(3-3)^2}{7}=\\frac{3}{7}\\\\\ns=\\sqrt{s^2}\\approx0.655\n\\\\n=8\\\\\n \\text{ the lower limit }= 3-1.895(\\frac{0.655}{\\sqrt{8}})\\\\\n\u22482.56,\\\\\n \\text{ the upper limit} = 3+1.895(\\frac{0.655}{\\sqrt{8}})\\\\\n\u22483.44,\\\\\n \\text{so the confidence interval is}\\\\ 2.56\\leq \\bar x \\leq 3.44\\\\"
Comments
Leave a comment