Question #127088

A random sample of eight drugstores shows the following prices (in $ of a popular pain reliever:

3.50, 4.00, 2.00, 3.00, 2.50, 3.50, 2.50, 3.00

Assume the normal distribution for the underlying population to construct the 90% confidence interval for the population mean.



1
Expert's answer
2020-07-21T19:05:29-0400

The confidence interval for the mean can be calculated as follows:xˉ±t(α2,n1)(sn),xˉ=3.5+4+...+38=3t(α2,n1)=t(0.05,7)=1.895,s2=(3.53)2+(43)2+...+(33)27=37s=s20.655n=8 the lower limit =31.895(0.6558)2.56, the upper limit=3+1.895(0.6558)3.44,so the confidence interval is2.56xˉ3.44\text{The confidence interval for the mean }\\ \text{can be calculated as follows:}\\ \bar x±t_{(\frac{α}{2},n-1)}(\frac{s}{\sqrt{n}}),\\ \bar x=\frac{3.5+4+...+3}{8}=3\\ t_{(\frac{α}{2},n-1)}=t_{(0.05,7)}=1.895,\\ s^2=\frac{(3.5-3)^2+(4-3)^2+...+(3-3)^2}{7}=\frac{3}{7}\\ s=\sqrt{s^2}\approx0.655 \\n=8\\ \text{ the lower limit }= 3-1.895(\frac{0.655}{\sqrt{8}})\\ ≈2.56,\\ \text{ the upper limit} = 3+1.895(\frac{0.655}{\sqrt{8}})\\ ≈3.44,\\ \text{so the confidence interval is}\\ 2.56\leq \bar x \leq 3.44\\


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS