Question #126974
In bolt factory , machine A ,B ,and C manufacturer 25, 35 and 40

Percent of the total output , 5, 4 and 2 percent , respectively are

defective bolts.A bolts is selected at random and found to be defective.

What is the probability that the bolt came from machine A , B and C ?
1
Expert's answer
2020-07-21T17:15:58-0400

here, P(A)=25100P(A)= \frac {25}{100} ​, P(B)=35100P(B)= \frac {35}{100} ​, P(C)=40100P(C)= \frac {40}{100} ​


P(D/A)=5100P(D/A)= \frac {5}{100} ​, P(D/B)=4100P(D/B)= \frac {4}{100} ​, P(D/C)=2100P(D/C)= \frac {2}{100} ​

where D denotes defective bolts


P(D)=P(A).P(D/A)+P(B).P(D/B)+P(C).P(D/C)P(D)=P(A).P( D/A )+P(B).P(D/B )+P(C).P( D/C)


P(D)=25100.5100+351004100+401002100P(D)=\frac {25}{100}.\frac {5}{100}+\frac {35}{100} ​ \frac {4}{100} +\frac {40}{100} ​ \frac {2}{100} =0.0345= 0.0345


P(A/D)=P(A).P(D/A)P(A).P(D/A)+P(B).P(D/B)+P(C).P(D/C)P(A/D)=\frac {P(A).P( D/A)} {P(A).P( D/A)+P(B).P(D/B )+P(C).P( D/C)}


P(A/D)=25100.51000.0345=2569P(A/D)=\frac {\frac{25}{100}. \frac {5}{100} } {0.0345}=\frac {25}{69}



P(B/D)=P(B).P(D/B)P(A).P(D/A)+P(B).P(D/B)+P(C).P(D/C)P(B/D)=\frac {P(B).P( D/B)} {P(A).P( D/A)+P(B).P(D/B )+P(C).P( D/C)}


P(B/D)=35100.41000.0345=2869P(B/D)=\frac {\frac{35}{100}. \frac {4}{100} } {0.0345}=\frac {28}{69}


P(C/D)=P(C).P(D/C)P(A).P(D/A)+P(B).P(D/B)+P(C).P(D/C)P(C/D)=\frac {P(C).P( D/C )} {P(A).P( D/A )+P(B).P(D/B)+P(C).P( D/C)}


P(C/D)=40100.21000.0345=1669P(C/D)=\frac {\frac{40}{100}. \frac {2 }{100} } {0.0345}=\frac {16}{69}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS