"\\def\\arraystretch{1.6}\n \\begin{array}{r|c:c:c:c:c:c:c}\n \\text{age} & 0-1 & 1-2 & 2-3 & 3-4 & 4-5 & 5-6 & 6-7 \\\\ \\hline\n \\text{probability} & 0.10 & 0.26 & 0.28 & 0.20 & 0.11 & 0.04 & 0.01 \\\\\n\\end{array}"
"P(0-4) = P(0-1)+P(1-2)+P(2-3)+P(3-4) = 0.84"
Solution:
Mean calculates using midpoints of range. So age of "\\alpha-(\\alpha+1)" means that random variable is "\\alpha + 0.5".
"M(X) = 0.5\\cdot0.10 + 1.5\\cdot 0.26 + 2.5\\cdot0.28+3.5\\cdot0.20+4.5\\cdot0.11+5.5\\cdot0.04+6.5\\cdot0.01 = 2.62"
"M(X^2) = 0.25\\cdot0.10 + 2.25\\cdot 0.26 + 6.25\\cdot0.28 + 12.25\\cdot0.20 + 20.25\\cdot0.11 + 30.25\\cdot0.04 + 42.25\\cdot0.01 = 8.67"
"D(X)=M(X^2) - (M(X))^2 = 8.67 - 6.8644 = 1.8056"
Answer:
Mean is 2.62
Variance is 1.8056
Comments
Leave a comment