Seventy million pounds of trout are grown in the U.S. every year. Farm-raised trout contain an average of grams of fat per pound, with a standard deviation of grams of fat per pound. A random sample of farm-raised trout is selected. The mean fat content for the sample is grams per pound. Find the probability of observing a sample mean of grams of fat per pound or less in a random sample of farm-raised trout.
Carry your intermediate computations to at least four decimal places. Round your answer to at least three decimal places.
1
Expert's answer
2012-08-09T08:02:08-0400
For any normal random variable X with mean μ and standard deviation σ , X ~ Normal( μ , σ ), (note that in most textbooks and literature the notation is with the variance, i.e., X ~ Normal( μ , σ² ). Most software denotes the normal with just the standard deviation.)
You can translate into standard normal units by: Z = ( X - μ ) / σ
Where Z ~ Normal( μ = 0, σ = 1). You can then use the standard normal cdf tables to get probabilities.
If you are looking at the mean of a sample, then remember that for any sample with a large enough sample size the mean will be normally distributed. This is called the Central Limit Theorem.
If a sample of size is is drawn from a population with mean μ and standard deviation σ then the sample average xBar is normally distributed
Comments
Leave a comment