Cumulative distribution function of normal distribution is
"F\\left( x \\right) = \\frac{1}{2}\\left(1 + \\mathop{\\mathrm{erf}}\\nolimits \\left(\\frac{x-\\mu}{\\sqrt{2}\\sigma}\\right) \\right)"
Here "\\mu = 144.5, \\sigma = 36" , so
"F\\left( x \\right) = \\frac{1}{2}\\left(1 + \\mathop{\\mathrm{erf}}\\nolimits \\left(\\frac{x-144.5}{36\\sqrt{2}}\\right) \\right)",
where erf function is
"\\mathop{\\mathrm{erf}}\\nolimits\\left(x\\right) = \\frac{2}{\\sqrt{\\pi}} \\int\\limits_0^x e^{-t^2} dt" .
To find a value of erf function, we have to check a special table of values or just use a calculator.
Solution:
"P\\left(X < 130\\right) = F\\left( 130 \\right) = \\frac{1}{2} \\left( 1 + \\mathop{\\mathrm{erf}}\\nolimits \\left( \\frac{-14.5}{36\\sqrt{2}} \\right) \\right) \\approx \\frac{1}{2} \\left( 1 - 0.3129 \\right) = 0.34355\\\\[0.3cm]"
Answer: 0.34355
Solution:
"P\\left( 151.5 < X < 182 \\right) = F\\left( 182 \\right) - F\\left( 151.5 \\right) = \\\\[0.3cm]"
"\\quad = \\frac{1}{2} \\left( 1 + \\mathop{\\mathrm{erf}}\\nolimits \\left( \\frac{37.5}{36\\sqrt{2}} \\right) \\right)\n- \\frac{1}{2} \\left( 1 + \\mathop{\\mathrm{erf}}\\nolimits \\left( \\frac{7}{36\\sqrt{2}} \\right) \\right) \\approx \\\\[0.3cm]"
"\\quad \\approx \\frac{1}{2} \\left( 1 + 0.7024 \\right) - \\frac{1}{2} \\left( 1 + 0.1542 \\right) \\approx 0.274 \\\\[0.3cm]"
Answer: 0.274
Solution:
"P\\left( X \\geq 150 \\right) = 1 - F\\left( 150 \\right) = 1 - \\frac{1}{2}\\left( 1 + \\mathop{\\mathrm{erf}}\\nolimits \\left( \\frac{5.5}{36\\sqrt{2}} \\right) \\right) \\approx \\\\[0.3cm]"
"\\quad \\approx 1-\\frac{1}{2}\\left( 1 + 0.1214 \\right) \\approx 0.4393 \\\\[0.3cm]"
Answer: 0.4393
Solution:
"P\\left( X > x_o \\right) = 1 - F\\left( x_o \\right) = 1 - \\frac{1}{2}\\left( 1 + \\mathop{\\mathrm{erf}}\\nolimits \\left( \\frac{x_o - 144.5}{36\\sqrt{2}} \\right) \\right) = 0.6 \\\\[0.3cm]"
"\\Longrightarrow \\quad \\mathop{\\mathrm{erf}}\\nolimits \\left( \\frac{x_o - 144.5}{36\\sqrt{2}} \\right) = -0.2 \\\\[0.3cm]"
"\\Longrightarrow \\quad \\frac{x_o - 144.5}{36\\sqrt{2}} \\approx -0.1791 \\\\[0.3cm]"
"\\Longrightarrow \\quad x_o \\approx 135.382 \\approx 135.5\\\\[0.3cm]"
Answer: 135.5
Comments
Leave a comment