Answer to Question #124655 in Statistics and Probability for 12kjdklll

Question #124655
The heights of 500 students are normally distributed with a mean of 144.5 centimeters and a variance of 36 centimeters. Assuming that the
heights are recorded to the nearest half-centimeter,
find probability,
(a) less than 130.0 centimeters?
(b) between 151.5 and 182.0 centimeters inclusive?
(c) greater than or equal to 150.0 centimeters?
(d) p(x>x0)=0.6
1
Expert's answer
2020-06-30T18:41:04-0400

general

Cumulative distribution function of normal distribution is

"F\\left( x \\right) = \\frac{1}{2}\\left(1 + \\mathop{\\mathrm{erf}}\\nolimits \\left(\\frac{x-\\mu}{\\sqrt{2}\\sigma}\\right) \\right)"

Here "\\mu = 144.5, \\sigma = 36" , so

"F\\left( x \\right) = \\frac{1}{2}\\left(1 + \\mathop{\\mathrm{erf}}\\nolimits \\left(\\frac{x-144.5}{36\\sqrt{2}}\\right) \\right)",

where erf function is

"\\mathop{\\mathrm{erf}}\\nolimits\\left(x\\right) = \\frac{2}{\\sqrt{\\pi}} \\int\\limits_0^x e^{-t^2} dt" .

To find a value of erf function, we have to check a special table of values or just use a calculator.


a)

Solution:

"P\\left(X < 130\\right) = F\\left( 130 \\right) = \\frac{1}{2} \\left( 1 + \\mathop{\\mathrm{erf}}\\nolimits \\left( \\frac{-14.5}{36\\sqrt{2}} \\right) \\right) \\approx \\frac{1}{2} \\left( 1 - 0.3129 \\right) = 0.34355\\\\[0.3cm]"

Answer: 0.34355


b)

Solution:

"P\\left( 151.5 < X < 182 \\right) = F\\left( 182 \\right) - F\\left( 151.5 \\right) = \\\\[0.3cm]"

"\\quad = \\frac{1}{2} \\left( 1 + \\mathop{\\mathrm{erf}}\\nolimits \\left( \\frac{37.5}{36\\sqrt{2}} \\right) \\right)\n- \\frac{1}{2} \\left( 1 + \\mathop{\\mathrm{erf}}\\nolimits \\left( \\frac{7}{36\\sqrt{2}} \\right) \\right) \\approx \\\\[0.3cm]"

"\\quad \\approx \\frac{1}{2} \\left( 1 + 0.7024 \\right) - \\frac{1}{2} \\left( 1 + 0.1542 \\right) \\approx 0.274 \\\\[0.3cm]"

Answer: 0.274


c)

Solution:

"P\\left( X \\geq 150 \\right) = 1 - F\\left( 150 \\right) = 1 - \\frac{1}{2}\\left( 1 + \\mathop{\\mathrm{erf}}\\nolimits \\left( \\frac{5.5}{36\\sqrt{2}} \\right) \\right) \\approx \\\\[0.3cm]"

"\\quad \\approx 1-\\frac{1}{2}\\left( 1 + 0.1214 \\right) \\approx 0.4393 \\\\[0.3cm]"

Answer: 0.4393


d)

Solution:

"P\\left( X > x_o \\right) = 1 - F\\left( x_o \\right) = 1 - \\frac{1}{2}\\left( 1 + \\mathop{\\mathrm{erf}}\\nolimits \\left( \\frac{x_o - 144.5}{36\\sqrt{2}} \\right) \\right) = 0.6 \\\\[0.3cm]"

"\\Longrightarrow \\quad \\mathop{\\mathrm{erf}}\\nolimits \\left( \\frac{x_o - 144.5}{36\\sqrt{2}} \\right) = -0.2 \\\\[0.3cm]"

"\\Longrightarrow \\quad \\frac{x_o - 144.5}{36\\sqrt{2}} \\approx -0.1791 \\\\[0.3cm]"

"\\Longrightarrow \\quad x_o \\approx 135.382 \\approx 135.5\\\\[0.3cm]"

Answer: 135.5


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS